• Title/Summary/Keyword: Hierarchical machine learning

Search Result 62, Processing Time 0.021 seconds

A Study on the Prediction of Learning Results Using Machine Learning (기계학습을 활용한 대학생 학습결과 예측 연구)

  • Kim, Yeon-Hee;Lim, Soo-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.695-704
    • /
    • 2020
  • Recently, There has been an increasing of utilization IT, and studies have been conducted on predicting learning results. In this study, Learning activity data were collected that could affect learning outcomes by using learning analysis. The survey was conducted at a university in South Chung-Cheong Province from October to December 2018, with 1,062 students taking part in the survey. First, A Hierarchical regression analysis was conducted by organizing a model of individual, academic, and behavioral factors for learning results to ensure the validity of predictors in machine learning. The model of hierarchical regression was significant, and the explanatory power (R2) was shown to increase step by step, so the variables injected were appropriate. In addition, The linear regression analysis method of machine learning was used to determine how predictable learning outcomes are, and its error rate was collected at about 8.4%.

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

Hierarchical multi-task learning with self-supervised auxiliary task (HiSS: 자기 지도 보조 작업을 결합한 계층적 다중 작업 학습)

  • Seunghan Lee;Taeyoung Park
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.5
    • /
    • pp.631-641
    • /
    • 2024
  • Multi-task learning is a popular approach in machine learning that aims to learn multiple related tasks simultaneously by sharing information across them. In this paper, we consider a hierarchical structure across multiple related tasks with a hierarchy of sub-tasks under the same main task, where representations used to solve the sub-tasks share more information through task-specific layers, globally shared layers, and locally shared layers. We thus propose the hierarchical multi-task learning with self-supervised auxiliary task (HiSS), which is a novel approach for hierarchical multi-task learning that incorporates self-supervised learning as an auxiliary task. The goal of the auxiliary task is to further extract latent information from the unlabeled data by predicting a cluster label directly derived from the data. The proposed approach is tested on the Hyodoll dataset, which consists of user information and activity logs of elderly individuals collected by AI companion robots, for predicting emergency calls based on the time of day and month. Our proposed algorithm is more efficient than other well-known machine learning algorithms as it requires only a single model regardless of the number of tasks, and demonstrates superior performance in classification tasks using various metrics. The source codes are available at: https://github.com/seunghan96/HiSS.

A Model of Recursive Hierarchical Nested Triangle for Convergence from Lower-layer Sibling Practices (하위 훈련 성과 융합을 위한 순환적 계층 재귀 모델)

  • Moon, Hyo-Jung
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.415-423
    • /
    • 2018
  • In recent years, Computer-based learning, such as machine learning and deep learning in the computer field, is attracting attention. They start learning from the lowest level and propagate the result to the highest level to calculate the final result. Research literature has shown that systematic learning and growth can yield good results. However, systematic models based on systematic models are hard to find, compared to various and extensive research attempts. To this end, this paper proposes the first TNT(Transitive Nested Triangle)model, which is a growth and fusion model that can be used in various aspects. This model can be said to be a recursive model in which each function formed through geometric forms an organic hierarchical relationship, and the result is used again as they grow and converge to the top. That is, it is an analytical method called 'Horizontal Sibling Merges and Upward Convergence'. This model is applicable to various aspects. In this study, we focus on explaining the TNT model.

Protein Disorder Prediction Using Multilayer Perceptrons

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.11-15
    • /
    • 2013
  • "Protein Folding Problem" is considered to be one of the "Great Challenges of Computer Science" and prediction of disordered protein is an important part of the protein folding problem. Machine learning models can predict the disordered structure of protein based on its characteristic of "learning from examples". Among many machine learning models, we investigate the possibility of multilayer perceptron (MLP) as the predictor of protein disorder. The investigation includes a single hidden layer MLP, multi hidden layer MLP and the hierarchical structure of MLP. Also, the target node cost function which deals with imbalanced data is used as training criteria of MLPs. Based on the investigation results, we insist that MLP should have deep architectures for performance improvement of protein disorder prediction.

Wild Image Object Detection using a Pretrained Convolutional Neural Network

  • Park, Sejin;Moon, Young Shik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.366-371
    • /
    • 2014
  • This paper reports a machine learning approach for image object detection. Object detection and localization in a wild image, such as a STL-10 image dataset, is very difficult to implement using the traditional computer vision method. A convolutional neural network is a good approach for such wild image object detection. This paper presents an object detection application using a convolutional neural network with pretrained feature vector. This is a very simple and well organized hierarchical object abstraction model.

Classification of human actions using 3D skeleton data: A performance comparison between classical machine learning and deep learning models (스켈레톤 데이터에 기반한 동작 분류: 고전적인 머신러닝과 딥러닝 모델 성능 비교)

  • Juhwan Kim;Jongchan Kim;Sungim Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.5
    • /
    • pp.643-661
    • /
    • 2024
  • This study investigates the effectiveness of 3D skeleton data for human action recognition by comparing the classification performance of machine learning and deep learning models. We use the subset of the NTU RGB+D dataset, containing only frontal-view recordings of 40 individuals performing 60 different actions. Our study uses linear discriminant analysis (LDA), support vector machine (SVM), and random forest (RF) as machine learning models, while the deep learning models are hierarchical bidirectional RNN (HBRNN) and semantics-guided neural network (SGN). To evaluate model performance, cross-subject cross-validation is conducted. Our analysis demonstrates that action type significantly impacts model performance. Cluster analysis by action category shows no significant difference in classification performance between machine learning and deep learning models for easily recognizable actions. However, for actions requiring precise differentiation based on frontal-view joint coordinates such as 'clapping' or 'rubbing hands', deep learning models show a higher performance in capturing subtle joint movements compared to machine learning models.

A Hierarchical deep model for food classification from photographs

  • Yang, Heekyung;Kang, Sungyong;Park, Chanung;Lee, JeongWook;Yu, Kyungmin;Min, Kyungha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1704-1720
    • /
    • 2020
  • Recognizing food from photographs presents many applications for machine learning, computer vision and dietetics, etc. Recent progress of deep learning techniques accelerates the recognition of food in a great scale. We build a hierarchical structure composed of deep CNN to recognize and classify food from photographs. We build a dataset for Korean food of 18 classes, which are further categorized in 4 major classes. Our hierarchical recognizer classifies foods into four major classes in the first step. Each food in the major classes is further classified into the exact class in the second step. We employ DenseNet structure for the baseline of our recognizer. The hierarchical structure provides higher accuracy and F1 score than those from the single-structured recognizer.

Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand: A Machine Learning Approach

  • Moon, Seongmin
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.