• Title/Summary/Keyword: Hierarchical agglomerative clustering

Search Result 43, Processing Time 0.029 seconds

Classification and Retrieval of Object - Oriented Reuse Components with HACM (HACM을 사용한 객체지향 재사용 부품의 분류와 검색)

  • Bae, Je-Min;Kim, Sang-Geun;Lee, Kyung-Whan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1733-1748
    • /
    • 1997
  • In this paper, we propose the classification scheme and retrieval mechanism which can apply to many application domains in order to construct the software reuse library. Classification scheme which is the core of the accessibility in the reusability, is defined by the hierarchical structure using the agglomerative clusters. Agglomerative cluster means the group of the reuse component by the functional relationships. Functional relationships are measured by the HACM which is the representation method about software components to calculate the similarities among the classes in the particular domain. And clustering informations are added to the library structure which determines the functionality and accuracy of the retrieval system. And the system stores the classification results such as the index information with the weights, the similarity matrix, the hierarchical structure. Therefore users can retrieve the software component using the query which is the natural language. The thesis is studied to focus on the findability of software components in the reuse library. As a result, the part of the construction process of the reuse library was automated, and we can construct the object-oriented reuse library with the extendibility and relationship about the reuse components. Also the our process is visualized through the browse hierarchy of the retrieval environment, and the retrieval system is integrated to the reuse system CARS 2.1.

  • PDF

An Efficient Clustering Method based on Multi Centroid Set using MapReduce (맵리듀스를 이용한 다중 중심점 집합 기반의 효율적인 클러스터링 방법)

  • Kang, Sungmin;Lee, Seokjoo;Min, Jun-ki
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.494-499
    • /
    • 2015
  • As the size of data increases, it becomes important to identify properties by analyzing big data. In this paper, we propose a k-Means based efficient clustering technique, called MCSKMeans (Multi centroid set k-Means), using distributed parallel processing framework MapReduce. A problem with the k-Means algorithm is that the accuracy of clustering depends on initial centroids created randomly. To alleviate this problem, the MCSK-Means algorithm reduces the dependency of initial centroids using sets consisting of k centroids. In addition, we apply the agglomerative hierarchical clustering technique for creating k centroids from centroids in m centroid sets which are the results of the clustering phase. In this paper, we implemented our MCSK-Means based on the MapReduce framework for processing big data efficiently.

A Comparative Study on the Agglomerative and Divisive Methods for Hierarchical Document Clustering (계층적 문서 클러스터링을 위한 응집식 기법과 분할식 기법의 비교 연구)

  • Lee, Jae-Yun;Jeong, Jin-Ah
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2005.08a
    • /
    • pp.65-70
    • /
    • 2005
  • 계층적 문서 클러스터링에 있어서 실험집단에 따라 응집식 기법과 분할식 기법의 성능이 다르며, 이를 좌우하는 요소는 분류의 깊이, 즉 분류수준이라고 가정하였다. 조금만 나누면 되는 대분류인 경우는 상대적으로 분할식 기법이 유리하고, 조금만 합치면 되는 소분류인 경우에는 응집식 기법이 유리할 것이라고 판단했기 때문이다. 그에 따라 분할식 클러스터링 기법인 양분(Bisecting) K-means기법과 응집식 기법인 완전연결, 평균연결, WARD기법의 성능을 실험집단이 대분류인 경우와 소분류인 경우의 유사계수를 적용하여 각 기법별 성능을 비교하여 실험집단의 특성에 따른 적합 클러스터링 기법을 찾고자 하였다. 실험결과 응집식 기법과 분할식 기법의 성능 우열에 영향을 미치는 것은 분류수준보다는 변이계수로 측정된 상대적인 군집의 크기 편차인 것으로 나타났다.

  • PDF

Regional Extension of the Neural Network Model for Storm Surge Prediction Using Cluster Analysis (군집분석을 이용한 국지해일모델 지역확장)

  • Lee, Da-Un;Seo, Jang-Won;Youn, Yong-Hoon
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.259-267
    • /
    • 2006
  • In the present study, the neural network (NN) model with cluster analysis method was developed to predict storm surge in the whole Korean coastal regions with special focuses on the regional extension. The model used in this study is NN model for each cluster (CL-NN) with the cluster analysis. In order to find the optimal clustering of the stations, agglomerative method among hierarchical clustering methods was used. Various stations were clustered each other according to the centroid-linkage criterion and the cluster analysis should stop when the distances between merged groups exceed any criterion. Finally the CL-NN can be constructed for predicting storm surge in the cluster regions. To validate model results, predicted sea level value from CL-NN model was compared with that of conventional harmonic analysis (HA) and of the NN model in each region. The forecast values from NN and CL-NN models show more accuracy with observed data than that of HA. Especially the statistics analysis such as RMSE and correlation coefficient shows little differences between CL-NN and NN model results. These results show that cluster analysis and CL-NN model can be applied in the regional storm surge prediction and developed forecast system.

Empirical Comparison of Word Similarity Measures Based on Co-Occurrence, Context, and a Vector Space Model

  • Kadowaki, Natsuki;Kishida, Kazuaki
    • Journal of Information Science Theory and Practice
    • /
    • v.8 no.2
    • /
    • pp.6-17
    • /
    • 2020
  • Word similarity is often measured to enhance system performance in the information retrieval field and other related areas. This paper reports on an experimental comparison of values for word similarity measures that were computed based on 50 intentionally selected words from a Reuters corpus. There were three targets, including (1) co-occurrence-based similarity measures (for which a co-occurrence frequency is counted as the number of documents or sentences), (2) context-based distributional similarity measures obtained from a latent Dirichlet allocation (LDA), nonnegative matrix factorization (NMF), and Word2Vec algorithm, and (3) similarity measures computed from the tf-idf weights of each word according to a vector space model (VSM). Here, a Pearson correlation coefficient for a pair of VSM-based similarity measures and co-occurrence-based similarity measures according to the number of documents was highest. Group-average agglomerative hierarchical clustering was also applied to similarity matrices computed by individual measures. An evaluation of the cluster sets according to an answer set revealed that VSM- and LDA-based similarity measures performed best.

An Interactive e-HealthCare Framework Utilizing Online Hierarchical Clustering Method (온라인 계층적 군집화 기법을 활용한 양방향 헬스케어 프레임워크)

  • Musa, Ibrahim Musa Ishag;Jung, Sukho;Shin, DongMun;Yi, Gyeong Min;Lee, Dong Gyu;Sohn, Gyoyong;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.399-400
    • /
    • 2009
  • As a part of the era of human centric applications people started to care about their well being utilizing any possible mean. This paper proposes a framework for real time on-body sensor health-care system, addresses the current issues in such systems, and utilizes an enhanced online divisive agglomerative clustering algorithm (EODAC); an algorithm that builds a top-down tree-like structure of clusters that evolves with streaming data to rationally cluster on-body sensor data and give accurate diagnoses remotely, guaranteeing high performance, and scalability. Furthermore it does not depend on the number of data points.

Face Search Method Based on Face Feature Extraction and Clustering (얼굴 특징 추출 및 클러스터링을 활용한 얼굴 검색 기법)

  • Shin, Junho;Kim, Jong-hwan;Cho, Sukhee;Kim, Junghak;Koh, Yeong Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.95-96
    • /
    • 2021
  • 최근 미디어의 발전으로 빠른 속도로 많은 양의 사람들의 얼굴이 포함된 사진, 동영상들이 인터넷에 업로드 되고 있다. 이러한 현상에 맞춰 인공지능을 활용한 얼굴 인식 기술의 놀라운 발전이 있었으나, 대규모 데이터셋에서 임의의 인물을 검색하는 경우에서는 연산량과 저장공간의 부담이 존재한다. 특히, 인터넷에 존재하는 수많은 불법 촬영물에서 피해자를 정확하고 신속하게 검색하기 위해서는 효율적인 얼굴 검색 시스템이 필요하다. 따라서, 본 논문은 얼굴 특징 추출과 클러스터링을 활용하여 방대한 양의 불법 촬영물 셋에서 피해자 동영상을 효율적으로 검색할 수 있는 기법을 제안한다. 불법 촬영물 동영상 검색 실험 환경을 만들기 위해 YouTube Faces [1] 데이터셋으로 유사 동영상 셋을 만들고 이 환경에서 실험을 진행한다. 얼굴 특징 추출 모델은 ResNet100 네트워크를 CosFace 손실함수와 Glint360K 데이터셋으로 학습시킨 모델 [2]을 사용한다. 추출된 얼굴 특징들을 HAC(Hierarchical Agglomerative Clustering) 알고리즘으로 클러스터링 한 후, 클러스터 대푯값을 통해 얼굴 검색 실험을 했을 때의 실험 결과를 분석한다.

  • PDF

Underdetermined blind source separation using normalized spatial covariance matrix and multichannel nonnegative matrix factorization (멀티채널 비음수 행렬분해와 정규화된 공간 공분산 행렬을 이용한 미결정 블라인드 소스 분리)

  • Oh, Son-Mook;Kim, Jung-Han
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.120-130
    • /
    • 2020
  • This paper solves the problem in underdetermined convolutive mixture by improving the disadvantages of the multichannel nonnegative matrix factorization technique widely used in blind source separation. In conventional researches based on Spatial Covariance Matrix (SCM), each element composed of values such as power gain of single channel and correlation tends to degrade the quality of the separated sources due to high variance. In this paper, level and frequency normalization is performed to effectively cluster the estimated sources. Therefore, we propose a novel SCM and an effective distance function for cluster pairs. In this paper, the proposed SCM is used for the initialization of the spatial model and used for hierarchical agglomerative clustering in the bottom-up approach. The proposed algorithm was experimented using the 'Signal Separation Evaluation Campaign 2008 development dataset'. As a result, the improvement in most of the performance indicators was confirmed by utilizing the 'Blind Source Separation Eval toolbox', an objective source separation quality verification tool, and especially the performance superiority of the typical SDR of 1 dB to 3.5 dB was verified.

Agglomerative Hierarchical Clustering Using Latent Semantic Analysis in Information Retrieval (정보 검색에서의 잠재 의미 분석 방법을 이용한 응집 계층 군집화 기법 연구)

  • Khiati, Abdel-Ilah Zakaria;Kang, Daehyun;Park, Hansaem;Kwon, Kyunglag;Chung, In-Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.952-955
    • /
    • 2014
  • 본 논문에서는 정보 검색 분야에서 잘 알려진 잠재 의미 분석 방법과 계층적 군집화 방법의 단점을 상호 보완하여 보다 효율적인 정보 검색을 위한 혼합형 군집화 방법을 제안한다. 먼저, 잠재 의미 분석 방법은 벡터 연산을 통하여 자동적으로 문서 내에 있는 잠재적인 의미를 찾는 정보 검색분야에서 많이 사용되는 고전적인 방법이다. 그러나 이 방법은 언어의 유의성이나 다의성으로 인하여 발생되는 백-오브-워드(bag-of-word) 문제를 가지고 있다. 두 번째 방법인 문서 군집화를 위하여 범용적으로 사용되고 있는 계층적 군집화 방법이다. 이 방법은 이를 통하여 분석된 군집의 질적 측면에서 볼 때, 여전히 단층적 군집들이 많이 형성되어 세부적인 분석을 통한 추가적인 군집화가 필요함을 알 수 있다. 따라서, 본 논문에서는 앞서 언급한 문제점을 해결하기 위하여 혼합적인 방법으로 잠재 의미 분석 방법을 이용한 응집 계층 군집화 방법을 제안한다. 제안한 방법을 이용하여 잘 알려진 두 개의 데이터에 적용하고 기존의 방법과 그 결과를 비교함으로써 군집의 질적 측면에서의 우수함을 보인다.

Underdetermined Blind Source Separation from Time-delayed Mixtures Based on Prior Information Exploitation

  • Zhang, Liangjun;Yang, Jie;Guo, Zhiqiang;Zhou, Yanwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2179-2188
    • /
    • 2015
  • Recently, many researches have been done to solve the challenging problem of Blind Source Separation (BSS) problems in the underdetermined cases, and the “Two-step” method is widely used, which estimates the mixing matrix first and then extracts the sources. To estimate the mixing matrix, conventional algorithms such as Single-Source-Points (SSPs) detection only exploits the sparsity of original signals. This paper proposes a new underdetermined mixing matrix estimation method for time-delayed mixtures based on the receiver prior exploitation. The prior information is extracted from the specific structure of the complex-valued mixing matrix, which is used to derive a special criterion to determine the SSPs. Moreover, after selecting the SSPs, Agglomerative Hierarchical Clustering (AHC) is used to automaticly cluster, suppress, and estimate all the elements of mixing matrix. Finally, a convex-model based subspace method is applied for signal separation. Simulation results show that the proposed algorithm can estimate the mixing matrix and extract the original source signals with higher accuracy especially in low SNR environments, and does not need the number of sources before hand, which is more reliable in the real non-cooperative environment.