• Title/Summary/Keyword: Hierarchical Cluster analysis

Search Result 303, Processing Time 0.026 seconds

A New Cluster Head Selection Technique based on Remaining Energy of Each Node for Energy Efficiency in WSN

  • Subedi, Sagun;Lee, Sang-Il;Lee, Jae-Hee
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.185-194
    • /
    • 2020
  • Designing of a hierarchical clustering algorithm is one of the numerous approaches to minimize the energy consumption of the Wireless Sensor Networks (WSNs). In this paper, a homogeneous and randomly deployed sensor nodes is considered. These sensors are energy constrained elements. The nominal selection of the Cluster Head (CH) which falls under the clustering part of the network protocol is studied and compared to Low Energy Adaptive Clustering Hierarchy (LEACH) protocol. CHs in this proposed process is the function of total remaining energy of each node as well as total average energy of the whole arrangement. The algorithm considers initial energy, optimum value of cluster heads to elect the next group of cluster heads for the network as well as residual energy. Total remaining energy of each node is compared to total average energy of the system and if the result is positive, these nodes are eligible to become CH in the very next round. Analysis and numerical simulations quantify the efficiency and Average Energy Ratio (AER) of the proposed system.

Classification of Daily Precipitation Patterns in South Korea using Mutivariate Statistical Methods

  • Mika, Janos;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1125-1139
    • /
    • 2006
  • The cluster analysis of diurnal precipitation patterns is performed by using daily precipitation of 59 stations in South Korea from 1973 to 1996 in four seasons of each year. Four seasons are shifted forward by 15 days compared to the general ones. Number of clusters are 15 in winter, 16 in spring and autumn, and 26 in summer, respectively. One of the classes is the totally dry day in each season, indicating that precipitation is never observed at any station. This is treated separately in this study. Distribution of the days among the clusters is rather uneven with rather low area-mean precipitation occurring most frequently. These 4 (seasons)$\times$2 (wet and dry days) classes represent more than the half (59 %) of all days of the year. On the other hand, even the smallest seasonal clusters show at least $5\sim9$ members in the 24 years (1973-1996) period of classification. The cluster analysis is directly performed for the major $5\sim8$ non-correlated coefficients of the diurnal precipitation patterns obtained by factor analysis In order to consider the spatial correlation. More specifically, hierarchical clustering based on Euclidean distance and Ward's method of agglomeration is applied. The relative variance explained by the clustering is as high as average (63%) with better capability in spring (66%) and winter (69 %), but lower than average in autumn (60%) and summer (59%). Through applying weighted relative variances, i.e. dividing the squared deviations by the cluster averages, we obtain even better values, i.e 78 % in average, compared to the same index without clustering. This means that the highest variance remains in the clusters with more precipitation. Besides all statistics necessary for the validation of the final classification, 4 cluster centers are mapped for each season to illustrate the range of typical extremities, paired according to their area mean precipitation or negative pattern correlation. Possible alternatives of the performed classification and reasons for their rejection are also discussed with inclusion of a wide spectrum of recommended applications.

Linear Dynamic Model of Gene Regulation Network of Yeast Cell Cycle

  • Changno Yoon;Han, Seung-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.77-77
    • /
    • 2003
  • Gene expression in a cell is regulated by mutual activations or repressions between genes. Identifying the gene regulation network will be one of the most important research topics in the post genomic era. We propose a linear dynamic model of gene regulation for the yeast cell cycle. A small gene network consisting of about 40 genes is reconstructed from the analysis of micro-array gene expression data of yeast S. cerevisiae published by P. Spellman et al. We show that the network construction is consistent with the result of the hierarchical cluster analysis.

  • PDF

A Hierarchical Cluster Tree Based Fast Searching Algorithm for Raman Spectroscopic Identification (계층 클러스터 트리 기반 라만 스펙트럼 식별 고속 검색 알고리즘)

  • Kim, Sun-Keum;Ko, Dae-Young;Park, Jun-Kyu;Park, Aa-Ron;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.562-569
    • /
    • 2019
  • Raman spectroscopy has been receiving increased attention as a standoff explosive detection technique. In addition, there is a growing need for a fast search method that can identify raman spectrum for measured chemical substances compared to known raman spectra in large database. By far the most simple and widely used method is to calculate and compare the Euclidean distance between the given spectrum and the spectra in a database. But it is non-trivial problem because of the inherent high dimensionality of the data. One of the most serious problems is the high computational complexity of searching for the closet spectra. To overcome this problem, we presented the MPS Sort with Sorted Variance+PDS method for the fast algorithm to search for the closet spectra in the last paper. the proposed algorithm uses two significant features of a vector, mean values and variance, to reject many unlikely spectra and save a great deal of computation time. In this paper, we present two new methods for the fast algorithm to search for the closet spectra. the PCA+PDS algorithm reduces the amount of computation by reducing the dimension of the data through PCA transformation with the same result as the distance calculation using the whole data. the Hierarchical Cluster Tree algorithm makes a binary hierarchical tree using PCA transformed spectra data. then it start searching from the clusters closest to the input spectrum and do not calculate many spectra that can not be candidates, which save a great deal of computation time. As the Experiment results, PCA+PDS shows about 60.06% performance improvement for the MPS Sort with Sorted Variance+PDS. also, Hierarchical Tree shows about 17.74% performance improvement for the PCA+PDS. The results obtained confirm the effectiveness of the proposed algorithm.

Distribution and Characteristics of Native and Exotic Plants on Cut Slopes and Rest Areas along Korean Highway Lines

  • Kim, Kee-Dae
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.549-559
    • /
    • 2007
  • Vegetation surveys were performed at 45 plots along 10 highways cut slopes in South Korea. Total floral inventory, species richness and exotic plant percentage were obtained within each plot. Life history and life form of each species appeared were analyzed. Community types were classified using hierarchical cluster analysis and detrended correspondence analysis and non-metric multidimensional scaling were conducted from vegetation matrix. 292 species of vascular plants were discovered and the number of natives and exotics were 226 and 66, respectively. There were no significant differences of species richness and exotic plant percentage between cut slopes and rest areas. Hierarchical cluster analysis indicated five clear vegetation associations in cut slopes and rest areas. Detrended correspondence analysis indicated that species composition of total and native plants were similar along the highway cut slopes whereas exotic plants were distributed differentially along the highway cut slopes. in non-metric multidimensional scaling, the studied sites were more separated from each other on the basis of their species composition than the results of detrended correspondence analysis with respect to total, native and exotic plants. The both ordination represented that exotic plants have not been made uniform yet on cut slopes and rest areas by highway corridor in spite of diverse chronosequences after highway construction termination (1 to 22 years). This study showed that the distribution of species composition in exotic plants was different and localized on cut slopes and rest areas of highway in this representative peninsula area of North East Asia and the invasion of exotic plants can retard the process of plant species homogenization.

Value Structure Model of the Success Factor of ITO Transition (ITO 이행단계 성공요인에 대한 가치체계모형 연구)

  • Cha, Hwan-Ju;Kim, Ja-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.1
    • /
    • pp.21-39
    • /
    • 2016
  • Although the demand for IT outsourcing (ITO) has increased recently because of the recent recession, concerns about business discontinuity in the transition phase cause companies to hesitate to adopt ITO. Therefore, a guideline to improve the prospects is needed. However, studies on the success factors of the transition phase in ITO are lacking. In this study, we develop an expert hierarchical value map (HVM) of the success of the transition phase in ITO by using cognition scientific methodologies. We empirically verify how success factors affect the success of the transition phase. Specifically, we derive an HVM of main stakeholders by using in-depth interviews and approaches, such as repertory grid technique (RGT) and laddering, based on means-end chain theory. We validate the success factors empirically through a bipolar analysis of RGT. Finally, we determine the most important cluster of success factors through cluster analysis.

Cluster Analysis of SNPs with Entropy Distance and Prediction of Asthma Type Using SVM (엔트로피 거리와 SVM를 이용한 SNP 군집분석과 천식 유형 예측)

  • Lee, Jung-Seob;Shin, Ki-Seob;Wee, Kyu-Bum
    • The KIPS Transactions:PartB
    • /
    • v.18B no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Single nucleotide polymorphisms (SNPs) are a very important tool for the study of human genome structure. Cluster analysis of the large amount of gene expression data is useful for identifying biologically relevant groups of genes and for generating networks of gene-gene interactions. In this paper we compared the clusters of SNPs within asthma group and normal control group obtained by using hierarchical cluster analysis method with entropy distance. It appears that the 5-cluster collections of the two groups are significantly different. We searched the best set of SNPs that are useful for diagnosing the two types of asthma using representative SNPs of the clusters of the asthma group. Here support vector machines are used to evaluate the prediction accuracy of the selected combinations. The best combination model turns out to be the five-locus SNPs including one on the gene ALOX12 and their accuracy in predicting aspirin tolerant asthma disease risk among asthmatic patients is 66.41%.

Evolutionary Computation-based Hybird Clustring Technique for Manufacuring Time Series Data (제조 시계열 데이터를 위한 진화 연산 기반의 하이브리드 클러스터링 기법)

  • Oh, Sanghoun;Ahn, Chang Wook
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2021
  • Although the manufacturing time series data clustering technique is an important grouping solution in the field of detecting and improving manufacturing large data-based equipment and process defects, it has a disadvantage of low accuracy when applying the existing static data target clustering technique to time series data. In this paper, an evolutionary computation-based time series cluster analysis approach is presented to improve the coherence of existing clustering techniques. To this end, first, the image shape resulting from the manufacturing process is converted into one-dimensional time series data using linear scanning, and the optimal sub-clusters for hierarchical cluster analysis and split cluster analysis are derived based on the Pearson distance metric as the target of the transformation data. Finally, by using a genetic algorithm, an optimal cluster combination with minimal similarity is derived for the two cluster analysis results. And the performance superiority of the proposed clustering is verified by comparing the performance with the existing clustering technique for the actual manufacturing process image.

Hierarchical Clustering of Gene Expression Data Based on Self Organizing Map (자기 조직화 지도에 기반한 유전자 발현 데이터의 계층적 군집화)

  • Park, Chang-Beom;Lee, Dong-Hwan;Lee, Seong-Whan
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.170-177
    • /
    • 2003
  • Gene expression data are the quantitative measurements of expression levels and ratios of numberous genes in different situations based on microarray image analysis results. The process to draw meaningful information related to genomic diseases and various biological activities from gene expression data is known as gene expression data analysis. In this paper, we present a hierarchical clustering method of gene expression data based on self organizing map which can analyze the clustering result of gene expression data more efficiently. Using our proposed method, we could eliminate the uncertainty of cluster boundary which is the inherited disadvantage of self organizing map and use the visualization function of hierarchical clustering. And, we could process massive data using fast processing speed of self organizing map and interpret the clustering result of self organizing map more efficiently and user-friendly. To verify the efficiency of our proposed algorithm, we performed tests with following 3 data sets, animal feature data set, yeast gene expression data and leukemia gene expression data set. The result demonstrated the feasibility and utility of the proposed clustering algorithm.

  • PDF

Novel assessment method of heavy metal pollution in surface water: A case study of Yangping River in Lingbao City, China

  • Liu, Yingran;Yu, Hongming;Sun, Yu;Chen, Juan
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The primary purpose of this research is to understand those elements that define heavy metals contamination and to propose a novel assessment method based on principal component analysis (PCA) in the Yangping River region of Lingbao City, China. This paper makes detailed calculations regarding such factors the single-factor assessment ($P_i$) and Nemerow's multi-factor index ($P_N$) of heavy metals found in the surface water of the Yangping River. The maximum values of $P_i$ (Cd) and $P_i$ (Pb) were determined to be 892.000 and 113.800 respectively. The maximum value of $P_N$ was calculated to be 639.836. The results of Pearson's correlation analysis, hierarchical cluster analysis, and PCA indicated heavy metal groupings as follows: Cu, Pb, Zn and As, Hg, Cd. The PCA-based pollution index ($P_{an}$) of samplings was subsequently calculated. The relative coefficient square was valued at 0.996 between $P_{an}$ and $P_N$, which indicated that $P_{an}$ is able to serve as a new heavy metal pollution index; not only this index able to eliminate the influence of the maximum value of $P_i$, but further, this index contains the principal component elements needed to evaluate heavy metal pollution levels.