• 제목/요약/키워드: Hidden Markov Model (HMM)

검색결과 453건 처리시간 0.027초

HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발 (Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model)

  • 조현수;박민규;이현정;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.

EHMM-CT: An Online Method for Failure Prediction in Cloud Computing Systems

  • Zheng, Weiwei;Wang, Zhili;Huang, Haoqiu;Meng, Luoming;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4087-4107
    • /
    • 2016
  • The current cloud computing paradigm is still vulnerable to a significant number of system failures. The increasing demand for fault tolerance and resilience in a cost-effective and device-independent manner is a primary reason for creating an effective means to address system dependability and availability concerns. This paper focuses on online failure prediction for cloud computing systems using system runtime data, which is different from traditional tolerance techniques that require an in-depth knowledge of underlying mechanisms. A 'failure prediction' approach, based on Cloud Theory (CT) and the Hidden Markov Model (HMM), is proposed that extends the HMM by training with CT. In the approach, the parameter ω is defined as the correlations between various indices and failures, taking into account multiple runtime indices in cloud computing systems. Furthermore, the approach uses multiple dimensions to describe failure prediction in detail by extending parameters of the HMM. The likelihood and membership degree computing algorithms in the CT are used, instead of traditional algorithms in HMM, to reduce computing overhead in the model training phase. Finally, the results from simulations show that the proposed approach provides very accurate results at low computational cost. It can obtain an optimal tradeoff between 'failure prediction' performance and computing overhead.

Hidden Markov Model을 이용한 심음분류에 관한 연구 (A Study on Classification of Heart Sounds Using Hidden Markov Models)

  • 김희근;정용주
    • 한국음향학회지
    • /
    • 제25권3호
    • /
    • pp.144-150
    • /
    • 2006
  • 심장병이 있는 환자들을 진료할 때 의사들은 청진기를 이용하여 심음 (heart sound)을 듣고 이를 기준으로 환자의 병의 유무나 질환의 종류에 대한 기초적인 판단을 하게 된다. 하지만, 심음은 환자의 상태나 외부 잡음의 영향에 따라서 신호의 특성이 변하고 또한 정상적인 심음과 질병을 나타내는 심음과의 차이가 비교적 구분하기 어려울 정도로 작기 때문에 숙달된 전문의가 아니면, 진단의 정확도가 떨어질 가능성이 있다. 따라서 신호처리 기법을 이용하여 심음을 분석해서 심음이 정상적인지의 유무를 자동으로 판단할 수 있다면, 진단을 하는 의사들에게 유용한 정보가 될 것이라 생각된다. 본 연구에서는 심음의 질병유무와 질병종류를 자동으로 판단하기 위해서 기존에 많이 사용되었던 artificial neural network (ANN) 대신에 hidden Markov model (HMM)을 사용하는 방법을 제안하였으며, 기초적인 실험결과 상당히 우수한 성능을 보임을 알 수 있었다.

지능형 영상 감시 시스템에서의 은닉 마르코프 모델을 이용한 특이 행동 인식 알고리즘 (A Recognition Algorithm of Suspicious Human Behaviors using Hidden Markov Models in an Intelligent Surveillance System)

  • 정창욱;강동중
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1491-1500
    • /
    • 2008
  • 본 논문은 은닉 마르코프 모델을 사용하여 사람의 특정한 행동을 인식하여 사용자에게 알려주는 지능형 영상 감시 시스템을 제안한다. 본 방법에는 카메라를 통해 입력된 영상에서 사람 영역을 찾은 후 발 영역만을 추출하여 특징이 되는 관측열을 생성한다 특징 영역은 입력 영상의 각 프레임을 16개의 영역으로 나누어 발바닥이 위치한 곳의 코드를 읽어 사용하고, 인식하고자 하는 패턴 행동들에 대해서는 각각의 관측열을 구하고 HMM의 Baum-Welch 알고리즘을 사용하여 학습한다. 인식에는 전향 알고리즘을 사용하여 입력된 행동과 학습된 행동을 확률적으로 비교하여 영상 내의 행동이 어떤 패턴 행동인지를 결정하여 출력한다. 제시된 방법은 복도에서 사람의 특정 행동을 인식하는데 성공적으로 적용될 수 있음을 실험을 통해 확인했다.

  • PDF

잡음에 강한 음성 인식에서 SNR 기준 함수를 사용한 가우시안 함수 변형 및 결정에 관한 연구 (A Study on Variation and Determination of Gaussian function Using SNR Criteria Function for Robust Speech Recognition)

  • 전선도;강철호
    • 한국음향학회지
    • /
    • 제18권7호
    • /
    • pp.112-117
    • /
    • 1999
  • 잡음에 강한 음성인식시스템을 위하여 주파수 차감법을 사용할 경우 음성 신호마저 차감하여 신호를 더욱 부식시키는 경우가 존재한다. 본 연구에서는 이러한 경우를 위해서 프레임 마다 추정 잡음과 차감 신호의 SNR(Signal to Noise Ratio) 함수로부터 반연속 HMM(Hidden Markov Model)의 가우시안 함수를 변형 및 결정하는 방법을 제안한다. 이 방법의 타당성을 위해 프레임마다 추정 잡음의 오류 정도가 추정 잡음의 크기와 관계함을 신호 파형 형태로써 보였으며, 이러한 이유에서 SNR을 기준으로 가우시안 함수를 변형 및 결정하게 된다. 실험에서 80㎞/h 이상의 속도로 달리는 차량 내에서 배경 잡음과 음성이 혼합되었을 때의 음성 인식율을 평가하였다. 그 결과 주파수 차감한 경우와 차감하지 않은 경우에 비해 본 논문에서 제안한 SNR에 의한 가우시안 결정 방법이 더욱 향상된 인식율을 보였다.

  • PDF

은닉 마코프 모델을 이용한 정신질환자의 뇌파 판별 (The Classification of the Schizophrenia EEG Signal using Hidden Markov Model)

  • 이경일;김필운;조진호;김명남
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권3호
    • /
    • pp.217-225
    • /
    • 2004
  • 본 논문에서는 은닉 마코프 모델을 이용하여 정상인과 정신분열증 환자의 뇌파에 대한 새로운 자동 판별 방법을 제안하였다. 특징 파라미터로는 통계적 정상구간에 대한 분산과 알파파, 베타파, 세타파의 전력비를 이용하였다. 실험 결과, 정상인의 경우에는 90.9%, 정신분열증 환자의 경우에는 90.5%의 높은 판별 정확성을 보였으며 이는 제안한 시스템이 복잡한 신호처리과정을 이용하는 시스템보다 효과적임을 알 수 있다. 따라서, 은닉 마코프 모델이 뇌파와 같은 복잡한 생체신호의 분석과 판별에 사용될 수 있으며 제안한 방법이 임상적인 전단에 상당한 도움이 될 것으로 기대된다.

Hidden Markov Model을 이용한 학습자 성향 파악에 관한 연구 (A study for classification of students' learning-styles with HMM)

  • 정영모;이지형;차현진;박선희;윤태복;김용세
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.310-313
    • /
    • 2006
  • 지능형 학습 시스템(ITS, Intelligent Tutoring System)은 학습자의 학습 스타일을 인지하여 학습자에 맞는 학습전략을 세우고 적절한 학습 서비스를 제공하는 시스템이다. 기존의 학습시스템은 학습자의 학습 스타일 보다는 학습 컨텐츠에 중심을 두어 학습자에게 맞는 학습 전략을 적절히 세우는 과정이 부족했다. 이에 본 논문에서는 학습자의 학습과정에서 발생한 데이터를 기반으로 학습자의 학습 스타일을 파악하는 방법을 제안한다. 이를 위해 서양 건축양식 학습을 위한 교육 컨텐츠를 이용하였으며, 수집된 데이터를 분석하여 Folder & Silverman 이 제시한 학습 스타일에 근거한 학습자의 학습 스타일을 추출하였다. 실험에서는 70명의 데이터를 수집하였고, 학습자가 교육 컨텐츠를 학습한 순서에 대한 시계열 데이터를 기반으로 학습자 성향을 알아보기 위하여 은닉 마코프 모델(Hidden Markov Model)을 사용하였다. 은닉 마코프 모델을 적용하여 얻은 분석 결과를 가지고 각 학습자에게 맞는 학습 스타일을 진단하였다. 은닉 마코프 모델에서 얻은 학습 스타일 진단 모델은 향후에 학습자 학습 스타일을 파악하는데 사용할 수 있으며, ITS에 있어 학습자 성향 분석 모듈로 고려해볼 수 있다.

  • PDF

인간의 제스쳐에 의한 감정 인식 (Emotion Recognition Based on Human Gesture)

  • 송민국;박진배;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.46-51
    • /
    • 2007
  • 영상을 통한 감정 인식 기술은 사회의 여러 분야에서 필요성이 대두되고 있음에도 불구하고 인식 과정의 어려움으로 인해 풀리지 않는 문제로 남아 있다. 특히, 인간의 움직임을 이용한 감정 인식 기술은 많은 응용이 가능하기 때문에 개발의 필요성이 증대되고 있다. 영상을 통해 감정을 인식하는 시스템은 매우 다양한 기법들이 사용되는 복합적인 시스템이다. 따라서 이를 설계하기 위해서는 영상에서의 움직임 추출, 특징 벡터 추출 및 패턴 인식 등 다양한 기법의 연구가 필요하다. 본 논문에서는 이전에 연구된 움직임 추출 방법들을 바탕으로 한 새로운 감정 인식 시스템을 제안한다. 제안된 시스템은 은닉 마코프 모델을 통해 동정된 분류기를 이용하여 감정을 인식한다. 제안된 시스템의 성능을 평가하기 위해 평가데이터 베이스가 구축되었으며, 이를 통해 제안된 감정 인식 시스템의 성능을 확인하였다.

한국어 음성인식 플랫폼(ECHOS)의 개선 및 평가 (Improvement and Evaluation of the Korean Large Vocabulary Continuous Speech Recognition Platform (ECHOS))

  • 권석봉;윤성락;장규철;김용래;김봉완;김회린;유창동;이용주;권오욱
    • 대한음성학회지:말소리
    • /
    • 제59호
    • /
    • pp.53-68
    • /
    • 2006
  • We report the evaluation results of the Korean speech recognition platform called ECHOS. The platform has an object-oriented and reusable architecture so that researchers can easily evaluate their own algorithms. The platform has all intrinsic modules to build a large vocabulary speech recognizer: Noise reduction, end-point detection, feature extraction, hidden Markov model (HMM)-based acoustic modeling, cross-word modeling, n-gram language modeling, n-best search, word graph generation, and Korean-specific language processing. The platform supports both lexical search trees and finite-state networks. It performs word-dependent n-best search with bigram in the forward search stage, and rescores the lattice with trigram in the backward stage. In an 8000-word continuous speech recognition task, the platform with a lexical tree increases 40% of word errors but decreases 50% of recognition time compared to the HTK platform with flat lexicon. ECHOS reduces 40% of recognition errors through incorporation of cross-word modeling. With the number of Gaussian mixtures increasing to 16, it yields word accuracy comparable to the previous lexical tree-based platform, Julius.

  • PDF

스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템의 설계 및 구현 (Design and Implementation of a Two-Phase Activity Recognition System Using Smartphone's Accelerometers)

  • 김종환;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권2호
    • /
    • pp.87-92
    • /
    • 2014
  • 본 논문에서는 스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템을 제안한다. 제안하는 행위 인식 시스템에서는 각 행위 별 가속도 데이터의 시간적 변화 패턴을 충분히 반영하기 위해, 1단계에서는 결정트리(DT) 학습을 수행하고, 2단계에서는 1단계 분류 결과들의 시퀀스를 이용하여 은닉 마코프 모델(HMM) 학습을 수행한다. 또한, 견고한 행위 인식기를 얻기 위해, 동일한 행위에 대해 서로 사용자와 서로 다른 스마트폰 위치와 방향으로부터 수집한 다양한 대용량 데이터를 이용하여 본 시스템을 훈련하였다. 6가지 실내 행위들에 대해 수집한 6720개의 가속도 센서 데이터를 이용한 실험을 통해, 본 시스템은 앞서 설명한 설계 방식을 기초로 높은 인식 성능을 보여주었다.