• Title/Summary/Keyword: Hidden Markov Model (HMM)

Search Result 453, Processing Time 0.036 seconds

Predicting Transmembrane $\alpha$-helix protein with SVM and HMM (SVM과 HMM을 이용한 $\alpha$-Helix 막횡단 단백질 예측)

  • 송철환;유성준;김민경;설영주
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.817-819
    • /
    • 2003
  • 현재 바이오인포매틱스(Bioinformatics) 분야에서 가장 중요한 부분 중의 하나는 유전자 및 단백질의 구조와 기능을 정확하게 예측하는 것이다. 이는 질병 치료 및 신약개발에 유용하여 이로부터 나온 결과로부터 경제적 산업적 효과를 기대할 수 있다. 이 논문에서는 기계학습(Machine Learning)의 한 분야인 SVM(Support Vector Machine)과 HMM(Hidden Markov Model)를 결합하여 단백질의 막횡단(Transmembrane) $\alpha$-Helix 단백질 지역을 예측하는 새로운 알고리즘을 개발, 구현 및 실험하였다. 그 결과 이 두 가지 알고리즘이 결합된 방식을 사용함으로써 성능을 향상 시킬 수 있음을 증명했다.

  • PDF

Performance Improvement in the Multi-Model Based Speech Recognizer for Continuous Noisy Speech Recognition (연속 잡음 음성 인식을 위한 다 모델 기반 인식기의 성능 향상에 대한 연구)

  • Chung, Yong-Joo
    • Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.55-65
    • /
    • 2008
  • Recently, the multi-model based speech recognizer has been used quite successfully for noisy speech recognition. For the selection of the reference HMM (hidden Markov model) which best matches the noise type and SNR (signal to noise ratio) of the input testing speech, the estimation of the SNR value using the VAD (voice activity detection) algorithm and the classification of the noise type based on the GMM (Gaussian mixture model) have been done separately in the multi-model framework. As the SNR estimation process is vulnerable to errors, we propose an efficient method which can classify simultaneously the SNR values and noise types. The KL (Kullback-Leibler) distance between the single Gaussian distributions for the noise signal during the training and testing is utilized for the classification. The recognition experiments have been done on the Aurora 2 database showing the usefulness of the model compensation method in the multi-model based speech recognizer. We could also see that further performance improvement was achievable by combining the probability density function of the MCT (multi-condition training) with that of the reference HMM compensated by the D-JA (data-driven Jacobian adaptation) in the multi-model based speech recognizer.

  • PDF

Implementation of Intelligent Speech Recognition System according to CCTV Emergency Information (CCTV 응급상황에 따른 지능형 음성인식 시스템 구현)

  • Cho, Young-Im;Jang, Sung-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.415-420
    • /
    • 2009
  • For the emergency detecting in general CCTV environment of our daily life, the monitoring by only images through CCTV information occurs some problems especially in cost as well as man power. Therefore, in this paper, for detecting emergency state dynamically through CCTV as well as resolving some problems, we propose our advanced speech recognition system. For the purpose of it, we adopt HMM(Hidden Markov Model) in our system to do a feature extraction. Also, we adopt Wiener filter technique for noise elimination in many information coming from on CCTV environment. In this paper, our system send only the emergency speech information to a manager to deal with emergency state effectively.

Android Platform based Gesture Recognition using Smart Phone Sensor Data (안드로이드 플랫폼기반 스마트폰 센서 정보를 활용한 모션 제스처 인식)

  • Lee, Yong Cheol;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.1 no.4
    • /
    • pp.18-26
    • /
    • 2012
  • The increase of the number of smartphone applications has enforced the importance of new user interface emergence and has raised the interest of research in the convergence of multiple sensors. In this paper, we propose a method for the convergence of acceleration, magnetic and gyro sensors to recognize the gesture from motion of user smartphone. The proposed method first obtain the 3D orientation of smartphone and recognize the gesture of hand motion by using HMM(Hidden Markov Model). The proposed method for the representation for 3D orientation of smartphone in spherical coordinate was used for quantization of smartphone orientation to be more sensitive in rotation axis. The experimental result shows that the success rate of our method is 93%.

  • PDF

Statistical Speech Feature Selection for Emotion Recognition

  • Kwon Oh-Wook;Chan Kwokleung;Lee Te-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.144-151
    • /
    • 2005
  • We evaluate the performance of emotion recognition via speech signals when a plain speaker talks to an entertainment robot. For each frame of a speech utterance, we extract the frame-based features: pitch, energy, formant, band energies, mel frequency cepstral coefficients (MFCCs), and velocity/acceleration of pitch and MFCCs. For discriminative classifiers, a fixed-length utterance-based feature vector is computed from the statistics of the frame-based features. Using a speaker-independent database, we evaluate the performance of two promising classifiers: support vector machine (SVM) and hidden Markov model (HMM). For angry/bored/happy/neutral/sad emotion classification, the SVM and HMM classifiers yield $42.3\%\;and\;40.8\%$ accuracy, respectively. We show that the accuracy is significant compared to the performance by foreign human listeners.

Gaussian Selection in HMM Speech Recognizer with PTM Model for Efficient Decoding (PTM 모델을 사용한 HMM 음성인식기에서 효율적인 디코딩을 위한 가우시안 선택기법)

  • 손종목;정성윤;배건성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • Gaussian selection (GS) is a popular approach in the continuous density hidden Markov model for fast decoding. It enables fast likelihood computation by reducing the number of Gaussian components calculated. In this paper, we propose a new GS method for the phonetic tied-mixture (PTM) hidden Markov models. The PTM model can represent each state of the same topological location with a shared set of Gaussian mixture components and contort dependent weights. Thus the proposed method imposes constraint on the weights as well as the number of Gaussian components to reduce the computational load. Experimental results show that the proposed method reduces the percentage of Gaussian computation to 16.41%, compared with 20-30% for the conventional GS methods, with little degradation in recognition.

A Study on Adaptive Model Updating and a Priori Threshold Decision for Speaker Verification System (화자 확인 시스템을 위한 적응적 모델 갱신과 사전 문턱치 결정에 관한 연구)

  • 진세훈;이재희;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.20-26
    • /
    • 2000
  • In speaker verification system the HMM(hidden Markov model) parameter updating using small amount of data and the priori threshold decision are crucial factor for dealing with long-term variability in people voices. In the paper we present the speaker model updating technique which can be adaptable to the session-to-intra speaker variability and the priori threshold determining technique. The proposed technique decreases verification error rates which the session-to-session intra-speaker variability can bring by adapting new speech data to speaker model parameter through Baum Welch re-estimation. And in this study the proposed priori threshold determining technique is decided by a hybrid score measurement which combines the world model based technique and the cohen model based technique together. The results show that the proposed technique can lead a better performance and the difference of performance is small between the posteriori threshold decision based approach and the proposed priori threshold decision based approach.

  • PDF

A study on the speech recognition by HMM based on multi-observation sequence (다중 관측열을 토대로한 HMM에 의한 음성 인식에 관한 연구)

  • 정의봉
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.4
    • /
    • pp.57-65
    • /
    • 1997
  • The purpose of this paper is to propose the HMM (hidden markov model) based on multi-observation sequence for the isolated word recognition. The proosed model generates the codebook of MSVQ by dividing each word into several sections followed by dividing training data into several sections. Then, we are to obtain the sequential value of multi-observation per each section by weighting the vectors of distance form lower values to higher ones. Thereafter, this the sequential with high probability value while in recognition. 146 DDD area names are selected as the vocabularies for the target recognition, and 10LPC cepstrum coefficients are used as the feature parameters. Besides the speech recognition experiments by way of the proposed model, for the comparison with it, the experiments by DP, MSVQ, and genral HMM are made with the same data under the same condition. The experiment results have shown that HMM based on multi-observation sequence proposed in this paper is proved superior to any other methods such as the ones using DP, MSVQ and general HMM models in recognition rate and time.

  • PDF

A study on recognition improvement of velopharyngeal insufficiency patient's speech using various types of deep neural network (심층신경망 구조에 따른 구개인두부전증 환자 음성 인식 향상 연구)

  • Kim, Min-seok;Jung, Jae-hee;Jung, Bo-kyung;Yoon, Ki-mu;Bae, Ara;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.703-709
    • /
    • 2019
  • This paper proposes speech recognition systems employing Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) structures combined with Hidden Markov Moldel (HMM) to effectively recognize the speech of VeloPharyngeal Insufficiency (VPI) patients, and compares the recognition performance of the systems to the Gaussian Mixture Model (GMM-HMM) and fully-connected Deep Neural Network (DNNHMM) based speech recognition systems. In this paper, the initial model is trained using normal speakers' speech and simulated VPI speech is used for generating a prior model for speaker adaptation. For VPI speaker adaptation, selected layers are trained in the CNN-HMM based model, and dropout regulatory technique is applied in the LSTM-HMM based model, showing 3.68 % improvement in recognition accuracy. The experimental results demonstrate that the proposed LSTM-HMM-based speech recognition system is effective for VPI speech with small-sized speech data, compared to conventional GMM-HMM and fully-connected DNN-HMM system.

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.