• 제목/요약/키워드: Hidden Markov Model (HMM)

검색결과 453건 처리시간 0.042초

동질성 Hidden Markov Chain 모형을 이용한 일강수량 모의기법 개발 (Development of Daily Rainfall Simulation Model Based on Homogeneous Hidden Markov Chain)

  • 권현한;김태정;황석환;김태웅
    • 대한토목학회논문집
    • /
    • 제33권5호
    • /
    • pp.1861-1870
    • /
    • 2013
  • 최근 기후변화 영향으로 인해 수문변동성이 크게 증가되고 있으며 이러한 변동성을 고려하기 위한 방안으로서 강수량 모의발생 기법에 대한 중요성이 대두되고 있다. 본 연구에서는 복잡한 강수발생 패턴을 인지하고 강수량의 다양한 분포특성을 고려할 수 있는 혼합분포를 이용한 동질성 Hidden Markov Chain(HMM) 모형을 제안하였다. HMM 모형의 개선효과를 검증하기 위해서 기존 Markov Chain 모형과 비교 하였으며 서울관측소 및 전주관측소를 대상으로 연구를 진행하였다. 계절강수량 및 일강수량 등 다양한 시간규모에서 모형의 적합성을 평가하기 위해서 천이확률, 평균, 분산, 왜곡도 및 첨예도 등을 비교하였으며 HMM 모형이 기존 Markov Chain 모형에 비해서 개선된 모의능력을 확인할 수 있었다. 특히, HMM 모형은 극치강수량을 재현하는데 있어서 기존 Markov Chain 모형에 비해서 월등한 모의능력을 보여주었다. 이러한 점에서 장기유출량 및 확률홍수량 등을 산정하기 위한 입력자료로 활용이 충분히 가능할 것으로 판단된다.

Hidden Markov Model 과 Genetic Algorithm을 이용한 온라인 문자인식에 관한 연구 (On-Line Character Recognition using Hidden Markov Model and Genetic Algorithm)

  • 홍영표;장춘서
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.29-32
    • /
    • 2000
  • HMM(Hidden Markov Model)은 시간적인 정보를 토대로 하는 수학적인 방법으로서 문자인식에 많이 사용되어지고 있다. 그런데 HMM이 적용되고자 하는 문제에서 사용되어지는 상태 수와 HMM에서 사용되어지는 parameter들은 처음에 결정되는 값들에 의해서 상당히 많은 영향을 받게 된다. 따라서 한글의 특성을 이용한 HMM의 상태 수를 결정한 후 결정되어진 각각의 HMM parameter들을 Genetic Algorithm을 이용하였다. Genetic Algorithm은 매개변수 최적화 문제에 대하여 자연의 진화 원리를 마땅한 알고리즘으로 선택, 교배, 돌연변이 연산을 이용하여 최적의 개체를 구하게 된다. 여기서는 HMM에서의 Viterbi Algorithm을 적합도 검사에 사용하였다.

  • PDF

2단계 은닉 마코프 모델을 이용한 논문 모집 공고의 자동 요약 (An Automatic Summarization of Call-For-Paper Documents Using a 2-Phase hidden Markov Model)

  • 김정현;박성배;이상조;박세영
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.243-250
    • /
    • 2008
  • 본 논문에서는 은닉 마코프 모델을 이용하여 논문 모집 공고에서 정보를 추출하는 시스템을 제안한다. 논문 모집 공고는 완전히 정형화된 형식을 가지지는 않지만, 내용의 출현 순서에 따른 흐름이 어느 정도 존재한다. 따라서 순차적인 데이터를 해석하는데 강점을 지닌 은닉 마코프 모델을 논문 모집 공고를 분석하는데 사용한다. 하지만, 논문 모집 공고를 은닉 마코프 모델로 직관적으로 모델링하면 정보 경계가 정확히 인식되지 않는 문제가 발생한다. 본 논문에서는 이 문제를 해결하기 위해 2-단계의 은닉 마코프 모델을 사용한다. 즉, 첫 번째 단계에서, 문서를 구로 모델링한 P-HMM(Phrase hidden Markov model)이 지역적으로 문서를 인식한다. 그리고 두 번째 단계에서 D-HMM(Document hidden Markov model)은 문서가 가진 전체적인 구조와 정보의 흐름을 파악한다. 웹에서 수집된 400개의 논문 모집 공고에 대한 실험 결과, F-measure 성능이 0.49를 보인다. 이는 직관적인 은닉 마코프 모델보다 F-measure로 0.15 정도 향상된 결과이다.

AR계수를 이용한 Hidden Markov Model의 기계상태진단 적용 (Application of Hidden Markov Model Using AR Coefficients to Machine Diagnosis)

  • 이종민;황요하;김승종;송창섭
    • 한국소음진동공학회논문집
    • /
    • 제13권1호
    • /
    • pp.48-55
    • /
    • 2003
  • Hidden Markov Model(HMM) has a doubly embedded stochastic process with an underlying stochastic process that can be observed through another set of stochastic processes. This structure of HMM is useful for modeling vector sequence that doesn't look like a stochastic process but has a hidden stochastic process. So, HMM approach has become popular in various areas in last decade. The increasing popularity of HMM is based on two facts : rich mathematical structure and proven accuracy on critical application. In this paper, we applied continuous HMM (CHMM) approach with AR coefficient to detect and predict the chatter of lathe bite and to diagnose the wear of oil Journal bearing using rotor shaft displacement. Our examples show that CHMM approach is very efficient method for machine health monitoring and prediction.

HMM(Hidden Markov Model)을 이용한 핸드 제스처인식 (Hand Gesture Recognition Using HMM(Hidden Markov Model))

  • 하정요;이민호;최형일
    • 디지털콘텐츠학회 논문지
    • /
    • 제10권2호
    • /
    • pp.291-298
    • /
    • 2009
  • 본 논문에서는 비전 기반의 실시간 손 모양 인식을 위한 알고리즘을 제안하였다. 먼저 피부색을 검출하기 위해 RGB 컬러모델을 YCbCr 컬러모델로 변환하고, 색차성분인 CbCr을 이용하여 피부색을 검출한다. 검출 후 피부색은 흰색, 그 이외의 색은 검은색으로 이진화 하였다. 이진화 후 팔 영역과 얼굴영역을 제거하고, 손 영역만 검출하여 손의 무게중심을 구하기 위해 가로, 세로로 프로젝션을 수행한다. 손의 무게중심을 찾은 후에 손의 궤적을 추적하기 위해 칼만필터를 이용하였다. 손의 궤적 추적 후에 손 모양을 인식시키기 위해 HMM(Hidden Markov Model)을 이용하여 6가지 손의 모양을 학습한 후 인식하였다. 실험을 통하여 제안한 알고리즘의 효과를 입증하였다.

  • PDF

Neural-HMM을 이용한 고립단어 인식 (Isolated-Word Recognition Using Neural Network and Hidden Markov Model)

  • 김연수;김창석
    • 한국통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.1199-1205
    • /
    • 1992
  • 본 논문에서는 HMM(Hidden Markov Models)에서 문제점이 되는 개인차에의한 변동을 흡수하고, 적은 학습 데이타로서 인식률을 향상시키기 위하여 신경회로망을 이용한 NN-HMM(Neural Network Hidden Makov Models)에 의해 한국어 인식에 관하여 연구하였다. 이 방법은 HMM과 신경회로망의 출력을 각각 독립적인 인식값으로 가정하여 두 시스템의 확률곱으로 서로 보정되어 최대 인식확률의 음성모델을 인식하는 음성인식 시스템이다. 본 방법의 타당성을 평가하기 위하여 남, 여화자가 28개의 DDD 지역명을 발성한 음성데이타로 실험한 결과, 이산분포 HMM에 의한 방법에서는 91[%], 신경회로망에 의한 방법에서는 89[%], 제안된 방법에서는 95[%]의 향상된 인식률을 얻으므로써 인식성능의 우수함을 확인하였다.

  • PDF

웨이블렛 계수와 Hidden Markov Model를 이용한 얼굴인식 기법 (The Method for Face Recognition using Wavelet Coefficients and Hidden Markov Model)

  • 이경아;이대종;박장환;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.162-165
    • /
    • 2003
  • 본 논문에서는 웨이블렛 계수와 Hidden Markov Model(HMM)이용한 얼굴인식 알고리즘을 제안한다. 입력 영상은 이산웨이블렛을 기반으로 한 다해상도 분석기법을 사용하여 데이터 수를 압축한 후, 각각의 해상도에서 얻어진 웨이블렛 계수를 특징벡터로 사용하여 HMM의 모델을 생성한다. 인식단계 에서는 웨이블렛 변환에 의해 생성된 개별대역의 인식값을 더하여 상호 보완함으로써 인식률을 높일 수 있었다. 제안된 알고리즘의 타당성을 검증하기 위하여 기본적 알고리즘인 벡터 양자화(VQ) 기법을 적용한 경우와 기존 얼굴인식에 제안된 DCT-HMM을 이용한 기법과의 인식률 비교를 한 결과, 제안된 방법이 우수한 성능을 보임을 알 수 있었다.

  • PDF

Two-Dimensional Model of Hidden Markov Mesh

  • 신봉기
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.772-779
    • /
    • 2006
  • The new model proposed in this paper is the hidden Markov mesh model or the 2D HMM with the causality of top-down and left-right direction. With the addition of the causality constraint, two algorithms for the evaluation of a model and the maximum likelihood estimation of model parameters have been developed theoretically which are based on the forward-backward algorithm. It is a more natural extension of the 1D HMM than other 2D models. The proposed method will provide a useful way of modeling highly variable image patterns such as offline cursive characters.

  • PDF

Hidden Markov Model과 Karhuman Loevs Transform를 이용한 얼굴인식 (A Face Recognition using the Hidden Markov Model and Karhuman Loevs Transform)

  • 김도현;황선기;강용석;김태우;김문환;배철수
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권1호
    • /
    • pp.3-8
    • /
    • 2011
  • 본 논문은 실험영상이 학습영상에 대해 조명의 차이가 있는 경우에도 데이터베이스 안에서 누구인지를 식별하는 얼굴인식 방법을 제안하였으며, 또한 HMM과 KLT를 이용한 얼굴인식 알고리즘의 수행결과를 비교, 분석하였다. 얼굴인식 방법으로 측정벡터는 직교변환(Karhuman Loevs Trans-form : KLT)의 상관관계를 이용하여 얻은 HMM의 정역학특성을 사용하여 HMM 기존의 얼굴인식 방법에서 인식률을 개선하였으며, 실험결과로써 조명의 조건에 따른 여러 가지 복잡한 주변 상황변화에서도 제안된 방식의 효율성을 입증할 수 있었다.

웨이블렛 계수와 Hidden Markov Model을 이용한 얼굴인식 기법 (Face Recognition Using Wavelet Coefficients and Hidden Markov Model)

  • 이경아;이대종;박장환;전명근
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.673-678
    • /
    • 2003
  • 본 논문에서는 웨이블렛 계수와 Hidden Markov Model(HMM) 이용한 얼굴인식 알고리즘을 제안 한다. 입력 영상은 이산웨이블렛을 기반으로 한 다행상도 분석기법을 사용하여 데이터 수를 압축한 후, 각각의 해상도에서 얻어진 웨이블렛 계수를 특징벡터로 사용하여 HMM의 모델을 생성한다. 인식단계 에서는 웨이블렛 변환에 의해 생성된 개별대역의 인식값을 더하여 상호 보완함으로써 인식률을 높일 수 있었다. 제안된 알고리즘의 타당성을 검증하기 위하여 기본적 알고리즘인 벡터 양자화(VQ) 기법을 적용한 경우와 기존 얼굴인식에 제안된 DCT-HMM을 이용한 기법과의 인식률 비교를 한 결과, 제안된 방법이 우수한 성능을 보임을 알 수 있었다.