• Title/Summary/Keyword: Hibernation File

Search Result 2, Processing Time 0.015 seconds

Study on Memory Data Encryption of Windows Hibernation File (윈도우 최대 절전 모드 파일의 메모리 데이터 암호화 기법 연구)

  • Lee, Kyoungho;Lee, Wooho;Noh, Bongnam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1013-1022
    • /
    • 2017
  • Windows hibernation is a function that stores data of physical memory on a non-volatile media and then restores the memory data from the non-volatile media to the physical memory when the system is powered on. Since the hibernation file has memory data in a static state, when the attacker collects it, key information in the system's physical memory may be leaked. Because Windows does not support protection for hibernation files only, we need to protect the memory that is written to the hibernate file. In this paper, we propose a method to encrypt the physical memory data in the hibernation file to protect the memory data of the processes recorded in the hibernation file. Hibernating procedure is analyzed to encrypt the memory data at the hibernating and the encryption process for hibernation memory is implemented to operate transparently for each process. Experimental results show that the hibernation process memory encryption tool showed about 2.7 times overhead due to the crypt cost. This overhead is necessary to prevent the attacker from exposing the plaintext memory data of the process.

A Method of Embedded Linux Light-Weight for Efficient Application Execution (어플리케이션 처리속도 개선을 위한 임베디드 리눅스 경량화 기법)

  • Lee, Tae-Woo;Cho, Ji-Yong;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, we propose a method of embedded linux light-weight to improve efficiency of application running on embedded systems. Three methods including fast booting scheme applying the Hibernation technique, JFFS2 file system optimization applying the Symbolic Link and virtual address mapping, kernel light-weight that guarantees the general purpose was applied. Since then check the system dependency and generate kernel image according to the target embedded kit. And embedded system performance of existing linux and linux which the method proposed in this paper was compared. In experimental result, the kernel size was 9.6% improved and the system booting time was 18% improved. And application processing speed on target embedded kit was improved 11% in the best case, 66% in the worst case. This result show that the light-weight method proposed in this paper is guarantee fast booting time and securing resources and it is good for the application processing speed improvement.