• Title/Summary/Keyword: Heuristic search

Search Result 538, Processing Time 0.022 seconds

A Collision Avoidance System for Intelligent Ship using BK-products and COLREGs (BK곱과 COLREGs에 기반한 지능형 선박의 충돌회피시스템)

  • Kang, Sung-Soo;Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a collision avoidance system for intelligent ship. Unlike collision avoidance system of other unmanned vehicles, the collision avoidance system for intelligent ship aims at not only deriving a reasonable and safe path to the goal but also keeping COLRECs(International Regulations for Preventing Collisions at Sea). The heuristic search based on the BK-products is adopted to achieve the general purpose of collision avoidance system; deriving a reasonable and safe path. The rule of action to avoid collision is adopted for the other necessary and sufficient condition; keeping the COLREGs. The verification of proposed collision avoidance system is performed with scenarios that represent encounter situations classified in the COLREGs, then it is compared with $A^{\ast}$ search method in view of optimality and safety. The analysis of simulation result revels that the proposed collision avoidance system is practical and effective candidate for real-time collision avoidance system of intelligent ship.

Optimization Algorithm for Minimizing Network Energy Consumption with Traffic Redundancy Elimination (트래픽 중복 제거로 네트워크 에너지 소비를 최소화하기 위한 최적화 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.930-939
    • /
    • 2021
  • In recent years, the use of broadband bandwidth and redundant links for stable transmission in networks has resulted in excessive energy consumption and reduced transmission efficiency. In this paper, we propose an optimization algorithm that reduces the number of transmission links and minimizes transmission energy by removing redundant traffic in networks where traffic redundancy is allowed. The optimization algorithm proposed in this paper uses the meta-heuristic method using Tabu search algorithm. The proposed optimization algorithm minimizes transmission energy by designing a neighborhood generation method that efficiently routes overlapping traffic. The performance evaluation of the proposed optimization algorithm was performed in terms of the number of links used to transmit all traffic generated in the network and the transmission energy consumed. From the performance evaluation results, it was confirmed that the proposed algorithm is superior to other algorithms previously proposed.

Decision Algorithm for Survival New Establishment Stores Location in Monopoly Market (독점시장에서 생존할 수 있는 신규 점포 위치 결정 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.213-220
    • /
    • 2018
  • This paper deals with survival facility location problem(SFLP) that the store with less of demand threshold level is closed result from another new establishment of store in the same kind of comparative firms have a monopoly market. We will be faced with a difficult problem when a new establishment stores in market saturation that the closed stores more than opening stores. Serra et al. proposes recursive heuristic concentration algorithm, and Han et al. suggests maximum insurance of customer location. But the drawback of these algorithms is a recursively computation for many locations. This paper get the solution from only neighborhood search of comparative firm's stores that can be maximum customers and closed comparative firm's store, and the location with minimum customer exchange to the location that can be closed the comparative firm's store with maximum customer. The advantage of this algorithm is to get the solution using a MS-Excel.

An optimal feature selection algorithm for the network intrusion detection system (네트워크 침입 탐지를 위한 최적 특징 선택 알고리즘)

  • Jung, Seung-Hyun;Moon, Jun-Geol;Kang, Seung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.342-345
    • /
    • 2014
  • Network intrusion detection system based on machine learning methods is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features from generally used features to detect network intrusion requires extensive computing resources. For instance, the number of possible feature combinations from given n features is $2^n-1$. In this paper, to tackle this problem we propose a optimal feature selection algorithm. Proposed algorithm is based on the local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In addition, the accuracy of clusters which obtained using selected feature components and k-means clustering algorithm is adopted to evaluate a feature assembly. In order to estimate the performance of our proposed algorithm, comparing with a method where all features are used on NSL-KDD data set and multi-layer perceptron.

  • PDF

Optimization Algorithm for Energy-aware Routing in Networks with Bundled Links (번들 링크를 가진 네트워크에서 에너지 인식 라우팅을 위한 최적화 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.572-580
    • /
    • 2021
  • In order to reduce transmission delay and increase reliability in networks, mainly high-performance and high-power network equipment is used to guarantee network quality. In this paper, we propose an optimization algorithm to minimize the energy consumed when transmitting traffic in networks with a bundle link composed of multiple physical cables. The proposed optimization algorithm is a meta-heuristic method, which uses tabu search algorithm. In addition, it is designed to minimize transmission energy by minimizing the cables on the paths of the source and destination nodes for each traffic. In the proposed optimization algorithm, performance evaluation was performed in terms of the number of cables used in the transmission and the link utilization for all traffic on networks, and the performance evaluation result confirmed the superior performance than the previously proposed method.

Development of a Method for Partial Searching Technique for Optimal Path Finding in the Long Journey Condition (장거리 최적경로탐색을 위한 부분탐색기법 연구)

  • Bae, Sanghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.361-366
    • /
    • 2006
  • It is widely known that the dynamic optimal path algorithm, adopting real-time path finding, can be supporting an optimal route with which users are satisfied economically and accurately. However, this system has to search optimal routes frequently for updating them. The proposed concept of optimizing search area lets it reach heuristic optimal path rapidly and efficiently. Since optimal path should be increased in proportion to an distance between origin and destination, tremendous calculating time and highly efficient computers are required for searching long distance journey. In this paper, as a result of which the concepts of partial solution and representative path are suggested. It was possible to find an optimal route by decreasing a half area in comparison with the previous method. Furthermore, as the size of the searching area is uniform, comparatively low efficient computer is required for long distance trip.

Use of Tree Traversal Algorithms for Chain Formation in the PEGASIS Data Gathering Protocol for Wireless Sensor Networks

  • Meghanathan, Natarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.612-627
    • /
    • 2009
  • The high-level contribution of this paper is to illustrate the effectiveness of using graph theory tree traversal algorithms (pre-order, in-order and post-order traversals) to generate the chain of sensor nodes in the classical Power Efficient-Gathering in Sensor Information Systems (PEGASIS) data aggregation protocol for wireless sensor networks. We first construct an undirected minimum-weight spanning tree (ud-MST) on a complete sensor network graph, wherein the weight of each edge is the Euclidean distance between the constituent nodes of the edge. A Breadth-First-Search of the ud-MST, starting with the node located closest to the center of the network, is now conducted to iteratively construct a rooted directed minimum-weight spanning tree (rd-MST). The three tree traversal algorithms are then executed on the rd-MST and the node sequence resulting from each of the traversals is used as the chain of nodes for the PEGASIS protocol. Simulation studies on PEGASIS conducted for both TDMA and CDMA systems illustrate that using the chain of nodes generated from the tree traversal algorithms, the node lifetime can improve as large as by 19%-30% and at the same time, the energy loss per node can be 19%-35% lower than that obtained with the currently used distance-based greedy heuristic.

Differential Evolution Algorithm based on Random Key Representation for Traveling Salesman Problems (외판원 문제를 위한 난수 키 표현법 기반 차분 진화 알고리즘)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.636-643
    • /
    • 2020
  • The differential evolution algorithm is one of the meta-heuristic techniques developed to solve the real optimization problem, which is a continuous problem space. In this study, in order to use the differential evolution algorithm to solve the traveling salesman problem, which is a discontinuous problem space, a random key representation method is applied to the differential evolution algorithm. The differential evolution algorithm searches for a real space and uses the order of the indexes of the solutions sorted in ascending order as the order of city visits to find the fitness. As a result of experimentation by applying it to the benchmark traveling salesman problems which are provided in TSPLIB, it was confirmed that the proposed differential evolution algorithm based on the random key representation method has the potential to solve the traveling salesman problems.

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Decision Support Method in Dynamic Car Navigation Systems by Q-Learning

  • Hong, Soo-Jung;Hong, Eon-Joo;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.361-365
    • /
    • 2002
  • 오랜 세월동안 위대한 이동수단을 만들어내고자 하는 인간의 꿈은 오늘날 눈부신 각종 운송기구를 만들어 내는 결실을 얻고 있다. 자동차 네비게이션 시스템도 그러한 결실중의 한 예라고 할 수 있을 것이다. 지능적으로 판단하고 정보를 처리할 수 있는 자동차 네비게이션 시스템을 부착함으로써 한 단계 발전한 운송수단으로 진화할 수 있을 것이다. 이러한 자동차 네비게이션 시스템의 단점이라면 한정된 리소스만으로 여러 가지 작업을 수행해야만 하는 어려움이다. 그래서 네비게이션 시스템의 주요 작업중의 하나인 경로를 추출하는 경로추출(Route Planning) 작업은 한정된 리소스에서도 최적의 경로를 찾을 수 있는 지능적인 방법이어야만 한다. 이러한 경로를 추출하는 작업을 하는데 기존에 일반적으로 쓰였던 두 가지 방법에는 Dijkstra s algorithm과 A*algorithm이 있다. 이 두 방법은 최적의 경로를 찾아낸다는 점은 있지만 경로를 찾기 위해서 알고리즘의 특성상 각각, 넓은 영역에 대하여 탐색작업을 해야 하고 또한 수행시간이 많이 걸린다는 단점과 또한 경로를 계산하기 위해서 Heuristic function을 추가적인 정보로 계산을 해야 한다는 단점이 있다. 본 논문에서는 적은 탐색 영역을 가지면서 또한 최적의 경로를 추출하는데 드는 수행시간은 작으며 나아가 동적인 교통환경에서도 최적의 경로를 추출할 수 있는 최적 경로 추출방법을 강화학습의 일종인 Q- Learning을 이용하여 구현해 보고자 한다.