• Title/Summary/Keyword: Heuristic optimization

Search Result 572, Processing Time 0.028 seconds

Optimized Mix Proportioning of Steel and Hybrid Reinforced Concrete Using Harmony Search Algorithm (화음탐색법을 이용한 강섬유 및 하이브리드 섬유보강 콘크리트의 최적배합 설계)

  • Lee, Chi-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.151-159
    • /
    • 2006
  • The guide line of the SFRC mix design was not established, and the convenience of the practical application on the spot is not so good. In this paper, hence, the program which is optimized to result the mix proportion by the flexural strength and toughness, was developed to apply to SFRC on the practical spot. This program could minimize the number of trial mixes and get an economical and appropriate mixture. In addition, the theoretical background on which the program is based, will be the basis of the embodied method to mixing SFRC. Additionally, new algorithm, in this paper, was used to develop the mix proportioning program of SFRC. The new algorithm is the Harmony Search which is the heuristic method mimicking the improvisation of music players, Musical performances seek a best state determined by aesthetic estimation, as the optimization algorithms seek a best state determined by objected function value. And, it was developed the program about single fiber reinforced concrete, beside to the hybrid fiber reinforced concrete that two kinds of steel fibers, which have the different geometry, was reinforced. This will be able to keep the world trend to study, hence, offers the basis of the next research about hybrid fiber reinforced concrete.

State-Aware Re-configuration Model for Multi-Radio Wireless Mesh Networks

  • Zakaria, Omar M.;Hashim, Aisha-Hassan Abdalla;Hassan, Wan Haslina;Khalifa, Othman Omran;Azram, Mohammad;Goudarzi, Shidrokh;Jivanadham, Lalitha Bhavani;Zareei, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.146-170
    • /
    • 2017
  • Joint channel assignment and routing is a well-known problem in multi-radio wireless mesh networks for which optimal configurations is required to optimize the overall throughput and fairness. However, other objectives need to be considered in order to provide a high quality service to network users when it deployed with high traffic dynamic. In this paper, we propose a re-configuration optimization model that optimizes the network throughput in addition to reducing the disruption to the mesh clients' traffic due to the re-configuration process. In this multi-objective optimization model, four objective functions are proposed to be minimized namely maximum link-channel utilization, network average contention, channel re-assignment cost, and re-routing cost. The latter two objectives focus on reducing the re-configuration overhead. This is to reduce the amount of disrupted traffic due to the channel switching and path re-routing resulted from applying the new configuration. In order to adapt to traffic dynamics in the network which might be caused by many factors i.e. users' mobility, a centralized heuristic re-configuration algorithm called State-Aware Joint Routing and Channel Assignment (SA-JRCA) is proposed in this research based on our re-configuration model. The proposed algorithm re-assigns channels to radios and re-configures flows' routes with aim of achieving a tradeoff between maximizing the network throughput and minimizing the re-configuration overhead. The ns-2 simulator is used as simulation tool and various metrics are evaluated. These metrics include channel-link utilization, channel re-assignment cost, re-routing cost, throughput, and delay. Simulation results show the good performance of SA-JRCA in term of packet delivery ratio, aggregated throughput and re-configuration overhead. It also shows higher stability to the traffic variation in comparison with other compared algorithms which suffer from performance degradation when high traffic dynamics is applied.

Design of Truss Structures with Real-World Cost Functions Using the Clustering Technique (클러스터링 기법을 이용한 실 경비함수를 가진 트러스 구조물의 설계)

  • Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.213-223
    • /
    • 2006
  • Conventional truss optimization approaches, while often sophisticated and computationally intensive, have been applied to simple, minimum weight-cost models. These approaches do not perform well when applied to real-world trusses, which have costmodels that are complex and which often involve multiple objectives. Thus, this paper describes the optimization strategies that a clustering technique, which identifies members that are likely to have the same product type, uses for the optimal design of truss structures with real- world cost functions that consider the costs on the weight of the truss, the number of products in the design, the number of joints in the structures, and the costs required in the site.At first, the clustering technique is applied to identify the members and to generate a proper initial solution. A simple taboo search technique is then used, which attempts to generate the optimal solution by starting with the solution from the previous technique. For example, the proposed approach is a plied to a typical problem and to a problem similar to relative performances. The results show that this algorithm generates not only better-quality solutions but also more efficient ones

Optimal deployment of sonobuoy for unmanned aerial vehicles using reinforcement learning considering the target movement (표적의 이동을 고려한 강화학습 기반 무인항공기의 소노부이 최적 배치)

  • Geunyoung Bae;Juhwan Kang;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.214-224
    • /
    • 2024
  • Sonobuoys are disposable devices that utilize sound waves for information gathering, detecting engine noises, and capturing various acoustic characteristics. They play a crucial role in accurately detecting underwater targets, making them effective detection systems in anti-submarine warfare. Existing sonobuoy deployment methods in multistatic systems often rely on fixed patterns or heuristic-based rules, lacking efficiency in terms of the number of sonobuoys deployed and operational time due to the unpredictable mobility of the underwater targets. Thus, this paper proposes an optimal sonobuoy placement strategy for Unmanned Aerial Vehicles (UAVs) to overcome the limitations of conventional sonobuoy deployment methods. The proposed approach utilizes reinforcement learning in a simulation-based experimental environment that considers the movements of the underwater targets. The Unity ML-Agents framework is employed, and the Proximal Policy Optimization (PPO) algorithm is utilized for UAV learning in a virtual operational environment with real-time interactions. The reward function is designed to consider the number of sonobuoys deployed and the cost associated with sound sources and receivers, enabling effective learning. The proposed reinforcement learning-based deployment strategy compared to the conventional sonobuoy deployment methods in the same experimental environment demonstrates superior performance in terms of detection success rate, deployed sonobuoy count, and operational time.

Virtual Source and Flooding-Based QoS Unicast and Multicast Routing in the Next Generation Optical Internet based on IP/DWDM Technology (IP/DWDM 기반 차세대 광 인터넷 망에서 가상 소스와 플러딩에 기초한 QoS 제공 유니캐스트 및 멀티캐스트 라우팅 방법 연구)

  • Kim, Sung-Un;Park, Seon-Yeong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • Routing technologies considering QoS-based hypermedia services have been seen as a crucial network property in next generation optical Internet (NGOI) networks based on IP/dense-wavelength division multiplexing (DWDM). The huge potential capacity of one single fiber. which is in Tb/s range, can be exploited by applying DWDM technology which transfers multiple data streams (classified and aggregated IP traffics) on multiple wavelengths (classified with QoS-based) simultaneously. So, DWDM-based optical networks have been a favorable approach for the next generation optical backbone networks. Finding a qualified path meeting the multiple constraints is a multi-constraint optimization problem, which has been proven to be NP-complete and cannot be solved by a simple algorithm. The majority of previous works in DWDM networks has viewed heuristic QoS routing algorithms (as an extension of the current Internet routing paradigm) which are very complex and cause the operational and implementation overheads. This aspect will be more pronounced when the network is unstable or when the size of network is large. In this paper, we propose a flooding-based unicast and multicast QoS routing methodologies(YS-QUR and YS-QMR) which incur much lower message overhead yet yields a good connection establishment success rate. The simulation results demonstrate that the YS-QUR and YS-QMR algorithms are superior to the previous routing algorithms.

Two-phases Hybrid Approaches and Partitioning Strategy to Solve Dynamic Commercial Fleet Management Problem Using Real-time Information (실시간 정보기반 동적 화물차량 운용문제의 2단계 하이브리드 해법과 Partitioning Strategy)

  • Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.145-154
    • /
    • 2004
  • The growing demand for customer-responsive, made-to-order manufacturing is stimulating the need for improved dynamic decision-making processes in commercial fleet operations. Moreover, the rapid growth of electronic commerce through the internet is also requiring advanced and precise real-time operation of vehicle fleets. Accompanying these demand side developments/pressures, the growing availability of technologies such as AVL(Automatic Vehicle Location) systems and continuous two-way communication devices is driving developments on the supply side. These technologies enable the dispatcher to identify the current location of trucks and to communicate with drivers in real time affording the carrier fleet dispatcher the opportunity to dynamically respond to changes in demand, driver and vehicle availability, as well as traffic network conditions. This research investigates key aspects of real time dynamic routing and scheduling problems in fleet operation particularly in a truckload pickup-and-delivery problem under various settings, in which information of stochastic demands is revealed on a continuous basis, i.e., as the scheduled routes are executed. The most promising solution strategies for dealing with this real-time problem are analyzed and integrated. Furthermore, this research develops. analyzes, and implements hybrid algorithms for solving them, which combine fast local heuristic approach with an optimization-based approach. In addition, various partitioning algorithms being able to deal with large fleet of vehicles are developed based on 'divided & conquer' technique. Simulation experiments are developed and conducted to evaluate the performance of these algorithms.

Transmitting Devices Selection Based on Viewpoint Popularity for Wireless Free-Viewpoint Video Streaming (무선 자유시점 비디오 스트리밍에서 인기도 기반 전송 기기 선택 기법)

  • Koo, Jae-Woo;Cho, Young-Jong;Kang, Kyungran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.546-554
    • /
    • 2016
  • Free-viewpoint video (FVV) is a synthesization technology that generates a virtual viewpoint video using multiple videos recorded via wireless devices at heterogeneous locations. In order to introduce a new service that grafts the FVV onto the real-time streaming service using wireless devices, we need to overcome several constraints. Two main factors of those constraints are the limited wireless capacity that are shared fairly by multiple devices, and the transmission time constraint with which live streaming services have to comply. Therefore, for optimal quality of entire videos, a set of transmitting devices should be effectively selected depending on the condition of wireless channel and the required video popularity of specific viewpoint requested from users. For optimal selection, this study proposes a heuristic algorithm that takes into account the aforementioned factors from possible wireless transmission error behaviors and the requested viewpoint popularity. Through analysis and simulation, we show that with this algorithm, quality of most popular viewpoint videos is guaranteed. Furthermore, performance comparison against the existing scheme which is based only on the location of recording devices is made.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

A Method to Find Feature Set for Detecting Various Denial Service Attacks in Power Grid (전력망에서의 다양한 서비스 거부 공격 탐지 위한 특징 선택 방법)

  • Lee, DongHwi;Kim, Young-Dae;Park, Woo-Bin;Kim, Joon-Seok;Kang, Seung-Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.311-316
    • /
    • 2016
  • Network intrusion detection system based on machine learning method such as artificial neural network is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features, which guarantees accuracy and efficienty, from generally used many features to detect network intrusion requires extensive computing resources. In this paper, we deal with a optimal feature selection problem to determine 6 denial service attacks and normal usage provided by NSL-KDD data. We propose a optimal feature selection algorithm. Proposed algorithm is based on the multi-start local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In order to evaluate the performance of our proposed algorithm, comparison with a case of all 41 features used against NSL-KDD data is conducted. In addtion, comparisons between 3 well-known machine learning methods (multi-layer perceptron., Bayes classifier, and Support vector machine) are performed to find a machine learning method which shows the best performance combined with the proposed feature selection method.

A Effective Ant Colony Algorithm applied to the Graph Coloring Problem (그래프 착색 문제에 적용된 효과적인 Ant Colony Algorithm에 관한 연구)

  • Ahn, Sang-Huck;Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.221-226
    • /
    • 2004
  • Ant Colony System(ACS) Algorithm is new meta-heuristic for hard combinational optimization problem. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. Recently, various methods and solutions are proposed to solve optimal solution of graph coloring problem that assign to color for adjacency node($v_i, v_j$) that they has not same color. In this paper introducing ANTCOL Algorithm that is method to solve solution by Ant Colony System algorithm that is not method that it is known well as solution of existent graph coloring problem. After introducing ACS algorithm and Assignment Type Problem, show the wav how to apply ACS to solve ATP And compare graph coloring result and execution time when use existent generating functions(ANT_Random, ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF method) with ANT_XRLF method that use XRLF that apply Randomize to RLF to solve ANTCOL. Also compare graph coloring result and execution time when use method to add re-search to ANT_XRLF(ANT_XRLF_R) with existent generating functions.