• Title/Summary/Keyword: Heterotrophic Activity

Search Result 54, Processing Time 0.021 seconds

Microcosm Study for Bioremediation of Oil-Contaminated Pebble Environments (자갈로 구성된 미소환경에서 미생물제제에 의한 유류분해)

  • Sim, Doo-Suep;Sohn, Jae-Hak;Kim, Sang-Jin
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.101-107
    • /
    • 1998
  • Biological treatment of Arabian light crude oil-contaminated pebble was investigated in laboratory microcosms after supplementation with inorganic nutrients and oil-degrading microorganisms. Glass columns ($10cm{\times}20cm$) were used as microcosms and each microcosm was filled with pebbles of diameter less than 40 mm. After initial oil contamination of 2.4% (w/v), Inipol EAP-22 or slow release fertilizer (SRF) was added as inorganic nutrients and microorganisms were sprayed over pebbles. When $C_{17}$/pristane and $C_{18}$/phytane ratios were used as a marker for oil biodegradation, both ratios for microcosm supplemented with SRF and microorganisms were the lowest (below detectable range) after 92 days. Elimination of oil by abiotic processes, however, were minimal with decrease of $C_{17}$/pristane and $C_{18}$/phytane ratios from 3.55 and 2.41 to 3.06 and 1.50, respectively. The numbers of heterotrophic and oil-degrading microorganisms, and biological activity (dehydrogenase activity) corresponded to the course of biodegradation activities in all microcosms. During the whole experimental period, there was no significant nutrient deficiency only in the microcosm with SRF and microorganisms. It seemed that a continuous supply of inorganic nutrients using SRF was the most important factor for the successful performance of biological treatment in oil-contaminated pebbles.

  • PDF

Effects of Slow Release Fertilizer and Dispersant on Biodegradation of Oil Contaminated in Sand Seashore Mesocosms (지속성 영양염제와 유분산제가 해변모래에 오염된 유류의 생분해에 미치는 영향)

  • 손재학;권개경;김상진
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • To evaluate the effects of slow release fertilizer and chemical dispersant on oil biodegradation, mesocosm studies were conducted on sand seashore. The rapid removal rates (85%) of aliphatic hydrocarbons and the simultaneous decreases of n-$C_{17}$/pristane (69%) and $n-C_{18}/phytane$ (61%) ratios by the addition of slow-release fertilizer (SRF) within 37 days of experiment indicated that SRF could enhance the oil degrading activity of indigenous microorganisms in sand mesocosm. Although the growth of heterotrophic bacteria and petroleumdegrading bacteria in the mesocosm treated with $Corexit 9527^{R}$ was stimulated, the biological oil removal based on the ratios of $Corexit 9527^{R}$ and $n-C_{18}/phytane$ was inhibited. Removal rates of aliphatic hydrocarbons (56%), and n-$C_{17}$/pristane (27%) and $n-C_{18}/phytane$ (17%) ratios by the addition of chemical dispersant $Corexit 9527^{R}$ were similar or lower than those values of control (50, 60, 46%), respectively. The biodegradation activity, however, when simultaneously treated with SRF and $Corexit 9527^{R}$, was not highly inhibited and even recovered after the elimination of chemical dispersant. From these results it could be concluded that the addition of SRF enhanced the oil removal rate in oligotrophic sand seashore and chemical dispersant possibly inhibit the oil biodegradation. Hence, in order to prevent the unrestrained usage of chemical dispersant in natural environments contaminated with oil, the National Contingency Plan of Oil Spill Response should be carefully revised in consideration of the application for bioremedaition techniques.

Continuous Hydrogen Production by Heterotrophic Growth of Citrobacter amalonaticus Y19 in Trickle Bed Reactor (Citrobacter amalonaticus Y19의 영양종속 성장을 이용한 Trickle Bed Reactor에서의 연속적인 수소생산)

  • Park, Ji-Young;Lee, Tae-Ho;Oh, You-Kwan;Kim, Jun-Rae;Seol, Eun-Hee;Jung, Gyoo-Yeol;Kim, Mi-Sun;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.458-463
    • /
    • 2005
  • [ $H_2$ ] from CO and water was continuously produced in a trickle bed reactor(TBR) using Citrobacter amalonaticus Y19. When the strain C. was cultivated in a stirred-tank reactor under a chemoheterotrophic and aerobic condition, the high final cell concentration of 13 g/L was obtained at 10 hr. When the culture was switched to an anaerobic condition with the continuous supply of gaseous CO, CO-dependent hydrogenase was fully induced and its hydrogen production activity approached 16 mmol/g cell/hr in 60 hr. The fully induced C. amalonaticus Y19 cells were circulated through a TBR packed with polyurethane foam, and the TBR was operated for more than 20 days for $H_2$ production. As gas retention time decreased or inlet CO partial pressure increased, $H_2$ production rate increased but the conversion from CO to $H_2$ decreased. The maximum $H_2$ production rate obtained was 16 mmol/L/hr at the gas retention time of 25 min and the CO inlet partial pressure of 0.4 atm. The high $H_2$ production rate was attributed to the high cell density in the liquid phase circulating the TBR as well as the high surface area of polyurethane foam used as packing material of the TBR.

Perchlorate Removal by River Microorganisms in Industrial Complexes (산업단지지역 하천 미생물에 의한 퍼클로레이트 제거)

  • Jo, Kang-Ick;Ahn, Yeonghee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • Perchlorate ($ClO_4^-$) is an emerging contaminant of soil/groundwater and surface water. $ClO_4^-$ has been shown to inhibit iodide uptake into the thyroid gland and cause a reduction in thyroid hormone production. $ClO_4^-$ is highly soluble and very stable in water. Biodegradation by $ClO_4^-$-reducing bacteria (PRB) is considered the most important factor in natural attenuation of $ClO_4^-$. Rivers in an industrial complex have potential to be contaminated with $ClO_4^-$ discharged from point or non-point sources. In this study, water samples were taken from the rivers running through the Gumi industrial complexes and used for batch test to analyze $ClO_4^-$-degradation potential of river microorganisms. The results of 83-h batch culture showed that $ClO_4^-$-removal efficiency of all samples was 0.77% or less without addition of an external electron ($e^-$) donor. However $ClO_4^-$-removal efficiency was higher when an $e^-$ donor (acetate, thiosulfate, $S^0$, or $F^0$) was added into the batch culture, showing up to 100% removal efficiency. The removal efficiency was various depending on type of $e^-$ donor and site of sampling. When acetate was used as an $e^-$ donor, the highest $ClO_4^-$-removal efficiency was observed among the $e^-$ donors used in this study, suggesting that activity of heterotrophic PRB was dominant. The results of this study provide basic information on natural attenuation of $ClO_4^-$ by river microorganisms. The information can be useful to prepare a strategy to enhance efficiency of $ClO_4^-$ biodegradation for in situ bioremediation.