• Title/Summary/Keyword: Heterojunction structure

Search Result 133, Processing Time 0.029 seconds

Self-Consistent Calculation of Electronic Subband Structure at GaInAs/InP Heterojunction (Self-Consistent 방법에 의한 GaInAs/InP 이종접합에서의 전자 부밴드 구조계산)

  • Kong, Joon-Jin;Park, Seong-Ho;Kim, Choon-Won;Han, Baik-Hyung;,
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.38-47
    • /
    • 1989
  • Calculated results for subband structures of electrons in GaInAs/InP hegerojunctions are presented, and their sensitivity to two parameters background impurity concentrations in the GaInAs, heterojunction barrier height-is examined. Energy levels, Fermi level and population of the ground energy level are increased with background impurity concentrations. The difference of the ground and first-excited energy levels is also increased with the increase of barrier height. However, the difference of the energy levels is almost invariable with barier height. But, population of the ground energy level decreases, but that of the first-excited energy level shows a slight increase.

  • PDF

Heterojunction Quantum Dot Solar Cells Based on Vertically Growth TiO2 Anatase Nanorod Arrays with Improved Charge Collection Property

  • Chung, Hyun Suk;Han, Gill Sang;Park, So Yeon;Lee, Dong Geon;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.466.2-466.2
    • /
    • 2014
  • The Quantum dot (QD) solar cells have been under active research due to their high light harvesting efficiencies and low fabrication cost. In spite of these advantages, there have been some problems on the charge collection due to the limitation of the diffusion length. The modification of advanced nanostructure is capable of solving the charge collection problem by increasing diffusion length of electron. One dimensional nanomaterials such as nanorods, nanowires, and nanotubes may enhance charge collection efficiency in QD solar cells. In this study, we synthesized $TiO_2$ anatase nanorod arrays with length of 200 nm by two-step sol-gel method. The morphology and crystal structure for the nanorod were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The anatase nanorods are single-crystalline and possess preferred orientation along with (001) direction. The photovoltaic properties for the heterojunction structure QD solar cells based on the anatase nanorod were also characterized. Compared with conventional $TiO_2$ nanoparticle based QD solar cells, these nanostructure solar cells exhibited better charge collection properties due to long life time measured by transient open circuit studies. Our findings demonstrate that the single crystalline anatase nanorod arrays are promising charge transport semiconductors for heterojunction QD solar cells.

  • PDF

Degradation of Antibiotics Using Silver Decorated Heterojunction Carbon Nitride under Visible Light (은 장식 이종접합 질화탄소를 이용한 가시광선 조건에서의 항생제 분해 연구)

  • Taeyoon, Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.3
    • /
    • pp.23-27
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has been used as effective photocatalyst for degradation of antibiotics under visible light irradiation. However, the fast recombination of hole-electron pair may limit their photocatalytic efficiency. In our study, Ag was grafted on g-C3N4/g-C3N4 isotype heterojunction by a microwave-assisted decomposition method. The structure and physical properties of heterojunction photocatalyst were characterized through X-ray diffraction, UV-DRS, FT-IR, and Photoluminescence analyses. Ag decorated g-C3N4/g-C3N4 isotype heterojunction exhibited excellent photocatalytic activity for degradation of sulfamethoxazole under irradiation under visible light irradiation within 210 min, which is higher than g-C3N4/g-C3N4 isotype heterojunction and bulk g-C3N4. The addition of Ag may broaden the visible light absorption and restrict the recombination of hole-electron pair because of the surface plasmons resonance, resulting in the improving the photocatalytic activity.

Electrical Properties of Organic Photovoltaic Cell using CuPc/$C_{60}$ double layer (CuPc/$C_{60}$ 이중층을 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Dong-Shin;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.744-746
    • /
    • 2008
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$Cu_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

Electrical Characteristics of CdS/CdTe Heterojunction Solar Cells (CdS/CdTe 이종접합 태양전지의 전기적특성)

  • Song, Woo-Chang;Lee, Jae-Hyoung;Nam, Jun-Hyun;Park, Yong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1174-1177
    • /
    • 1995
  • In this paper, electrical properties CdS/CdTe heterojunction solar cell prepared by electron beam evaporation method were investigated. Crystal structure of CdS films deposited at substrate temperature of $50{\sim}250^{\circ}C$ was hexagonal type with preferential orientation of the (002)plane parallel to the substrate. Optical transmittance of the CdS film is increasing and resistivity is decreasing with increasing subsrate temperature. CdS/CdTe Solar cell characteristics were improved by increasing of substrate and annealing temperature. However, low efficiency due to small Jsc, Voc below 0.3 $mA/cm^2$ and 430 mV are observed. Low efficiency is contributed to be high resistance of CdTe films and contact.

  • PDF

Simulation of the light emission from quantum-well based heterojunction bipolar transistors

  • Park, Yeong-Gyu;Park, Mun-Ho;Kim, Gwang-Ung;Park, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.52-52
    • /
    • 2009
  • In this work, we demonstrate the modelling and simulation of the AlGaAs/GaAs quantum-well based light emitting transistor(LET). Based on the experimental and theoretical model, we have compared between a heterojunction bipolar transistor(HBT) structure with quantum wells in the base region and a HBT without quantum wells in the base region. For the purpose of optimizing device design, several analytic and numerical studies have been presented.

  • PDF

Design of an AlGaAs/GaAs Double-Heterojunction Power FET (AlGaAs/GaAs double-heterojunction 전력용 FET의 설계)

  • 박인식;김상명;신석현;이진구;신재호;김도현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.57-62
    • /
    • 1993
  • In this paper, both feasible power gain and power added efficiency at the operating center frequency of 12 GHz are stressed to design a power FET with double-heterjunction structure. The variable parameters or the design are the unit gate width, the gate length, the doping density of AlGaAs, the AlGaAs thickness, the spacer thickness, the Al mole fraction, and the GaAs well thickness. The results of simulation for the FET with 1.mu.m gate length show that the power gain and the power added efficiency are 10.2 dB and 36.3% at 12GHz, respectively. An extrapolation of the relation between current gain and unilateral gain yields a 17 GHz cutoff frequency and 43GHz maximum frequency of oscillation. The calculation of the current versus voltage characteristics show that the output power of the device is about 0.62W.

  • PDF

Electrical Properties of Organic Photovoltaic Cell using CuPc (CuPc를 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.612-614
    • /
    • 2008
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10nm to 50nm, we have obtained that the optimum CuPc layer thickness is around 40nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

A study on the n-CdS/p-InP solar cells (n-CdS/p-InP 태양전지에 관한 연구)

  • 송복식;최영복;한성준;문동찬;김선태
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.406-412
    • /
    • 1995
  • A n-CdS thin films were evaporated by thermal evaporation method and their structure, optical transmission spectra and electrical characteristics were investigated. The photovoltaic characteristics of solar cells which were fabricated in optimum conditions measured. The evaporated CdS thin films showed in hexagonal structure and above 80% of optical transmission spectra regardless of impurity doping. The high quality thin films could be obtained at 150.deg. C temperature of substrate, which is useful for solar cell window layer with low resistivity of 6*10$\^$-2/(.ohm.-cm) by In doping We measured the electrical and optical characteristics of the n-CdS/p-InP heterojunction solar cells. The most efficient photovoltaic characteristics of heterojunction solar cells had the open circuit voltage of 0.66V, short circuit current density of 13.85mA/cm$\^$2/, fill factor of 0.576 and conversion efficiency of 8.78% under 60mW/cm$\^$2/ illumination.

  • PDF

Interface Study of the Intermediate Connectors in Tandem Organic Devices

  • Tang, Jian-Xin;Fung, Man-Keung;Lee, Chun-Sing;Lee, Shuit-Tong
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • The intermediate connectors play crucial roles in the performance of tandem organic light-emitting diodes (OLEDs) because they are required to facilitate charge carrier transport and to guarantee transparency for light transmission and deposition compatibility. Understanding the physical properties of the intermediate connector is not only fundamentally important but is also crucial to developing high-efficiency organic devices with a tandem structure. In this study, several effective intermediate connectors in tandem OLEDs using a doped or non-doped organic p-n heterojunction were systematically investigated by studying their interfacial electronic structures and corresponding device characteristics. The working mechanisms of the intermediate connectors are discussed herein by referring to their relevant energy levels with respect to those of the neighboring organic layers. The factors affecting the operation of the intermediate connectors in tandem OLEDs, as demonstrated herein, provide guidance for the identification of new materials and device architectures for high-performance devices.