• Title/Summary/Keyword: Heterojunction solar cells

Search Result 154, Processing Time 0.029 seconds

The Study on the the P3HT:PCBM Bulk Heterojunction Solar Cells Utilizing $WO_3$ Nano-particle As a Hole Transporting Layer

  • Choe, Ha-Na;Kim, Seong-Hyeon;Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.321-321
    • /
    • 2010
  • The PEDOT:PSS layer is usually used as hole transporting layer for the polymer bulk heterojunction solar cells. However, the interface between ITO and PEDOT:PSS is not stable and the chemical reaction between ITO and PEDOT can result in degraded device performance. We used the tungsten oxides as a hole transport layer by spin-coating. The $WO_3$ nanoparticles were well dispersed in ammonium hydroxide and deionized water and formed thin layer on the ITO anode. We found that $WO_3$ surface is more hydrophobic than the bare ITO or PEDOT:PSS-coated surfaces. The hydrophobic surfaces promote an ordered growth of P3HT films. A higher degree of P3HT ordering is expected to improve the hole mobility and the lifetime of the device using the tungsten oxide showed better stability compared to the device using the PEDOT:PSS.

  • PDF

Characteristics of Vanadium Oxide Grown by Atomic Layer Deposition for Hole Carrier Selective Contacts Si Solar Cells (실리콘 전하선택접합 태양전지 적용을 위한 원자층 증착법으로 증착된 VOx 박막의 특성)

  • Park, Jihye;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.660-665
    • /
    • 2020
  • Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 µs after post-deposition annealing (PDA) at 100 ℃. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 ℃ the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 ℃, and 5:5 for annealing at 300 ℃. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.

Dynamic Response of Charge Recombination from Post-Annealing Process in Organic Solar Cell Using Intensity Modulated Photovoltage Spectroscopy

  • Jeong, Hanbin;Yun, Suk-Jin;Lee, Jae Kwan
    • Journal of Integrative Natural Science
    • /
    • v.9 no.4
    • /
    • pp.275-280
    • /
    • 2016
  • Intensity modulated photovoltage spectroscopy (IMVS) analysis of organic solar cells (OSCs) with a bulk-heterojunction (BHJ) film composed of P3HT and $PC_{61}BM$ was performed. The dynamic response of charge recombination by the post-annealing approach in $P3HT/PC_{61}BM$ BHJ solar cells characterized by IMVS demonstrated that post-annealing reduced the recombination of electron carriers in the device. The recombination times of $P3HT/PC_{61}BM$ BHJ solar cells post-annealed at room temperature, 80, 120, and $140^{\circ}C$ were 0.009, 0.020, 0.024, and 0.030 ms, respectively, at a short-circuit current of 0.18 mA. The results indicated that the IMVS analysis can be effectively used as powerful.

Investigation of short-term stability in high efficiency polymer : nonfullerene solar cells via quick current-voltage cycling method

  • Lee, Sooyong;Seo, Jooyeok;Kim, Hwajeong;Song, Dong-Ik;Kim, Youngkyoo
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2496-2503
    • /
    • 2018
  • The short-term stability of high efficiency polymer : nonfullerene solar cells was investigated by employing a quick (ten cycles) current density-voltage (J-V) cycling method. Polymer : nonfullerene solar cells with initial power conversion efficiency (PCE) of >10% were fabricated using bulk heterojunction (BHJ) films of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5,7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6/7-methyl)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). One set of the BHJ (PBDB-T : IT-M) films was thermally annealed at $160^{\circ}C$ for 30min, while another set was used without any thermal treatment after spin-coating. The quick J-V scan (cycling) measurement disclosed that the PCE decay was relatively slower for the annealed BHJ layers than the unannealed (as-cast) BHJ layers. As a result, after ten cycles, the annealed BHJ layers delivered higher PCE than the unannealed BHJ layers due to higher and more stable trend in fill factor. The present quick J-V cycling method is simple but expected to be useful for the prediction of short-term stability in organic solar cells.

Effect of Short Circuit Current Enhancement in Solar Cell by Quantum Well Structure and Quantitative Analysis of Elements Using Secondary Ion Mass Spectrometry (양자우물구조에 의한 태양전지 단락전류 증가 효과와 이차이온 질량분석법에 의한 원소 정량 분석)

  • Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.499-503
    • /
    • 2019
  • Characteristics of solar cells employing a lattice matched GaInP/GaAs quantum well (QW) structure in a single N-AlGaInP/p-InGaP heterojunction (HJ) were investigated and compared to those of solar cells without QW structure. The epitaxial layers were grown on a p-GaAs substrate with $6^{\circ}$ off the (100) plane toward the <111>A. The heterojunction of solar cell consisted of a 400 nm N-AlGaInP, a 590 nm p-GaInP and 14 periods of a 10 nm GaInP/5 nm GaAs for QW structure and a 800 nm p-GaInP for the HJ structure (control cell). The solar cells were characterized after the anti-reflection coating. The short-circuit current density for $1{\times}1mm^2$ area was $9.61mA/cm^2$ for the solar cell with QW structure while $7.06mA/cm^2$ for HJ control cells. Secondary ion mass spectrometry and external quantum efficiency results suggested that the significant enhancement of $J_{sc}$ and EQE was caused by the suppression of recombination by QW structure.

A study on the capacitance-voltage characteristics of the CdZnS/CdTe heterojunction (CdZnS/CdTe 이종접합의 커패시턴스-전압 특성에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1349-1354
    • /
    • 2011
  • In this work, we fabricated the CdZnS/CdTe heterojunction and investigated the C-V characteristics to determine the depletion width and the charge density distribution. A parallel experiment on CdS/CdTe heterojunction was also carried out for comparison. The depletion region width, for CdZnS/CdTe heterojunction, was nearly constant, regardless of bias voltage. However, the depletion region was wider than that of CdS/CdTe heterojunction due to high resistivity of CdZnS film. The interface charge density of CdZnS/CdTe heterojunction was increased linearly with the bias voltage and showed lower values than those for CdS/CdTe junction. The open circuit voltage of CdZnS/CdTe heterojunction solar cells increased with zinc mole ratio due to reducing of the electron affinity difference between CdZnS and CdTe films. However, the increase of series resistance due to the high resistivity of Cd1-xZnxS films results in reducing conversion efficiency.

Potential Wide-gap Materials as a Top Cell for Multi-junction c-Si Based Solar Cells: A Short Review

  • Pham, Duy Phong;Lee, Sunhwa;Kim, Sehyeon;Oh, Donghyun;Khokhar, Muhammad Quddamah;Kim, Sangho;Park, Jinjoo;Kim, Youngkuk;Cho, Eun-Chel;Cho, Young-Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.76-84
    • /
    • 2019
  • Silicon heterojunction solar cells (SHJ) have dominated the photovoltaic market up till now but their conversion performance is practically limited to around 26% compared with the theoretical efficiency limit of 29.4%. A silicon based multi-junction devices are expected to overcome this limitation. In this report, we briefly review the state-of-art characteristic of wide-gap materials which has played a role as top sub-cells in silicon based multi-junction solar cells. In addition, we indicate significantly practical challenges and key issues of these multi-junction combination. Finally, we focus to some characteristics of III-V/c-Si tandem configuration which are reaching highly record performance in multi-junction silicon solar cells.

High-Efficiency ITO/Se Solar Cells (Se 태양전지(太陽電池)의 고효율화(高效率化)에 관한 연구(硏究))

  • Kim, Tae-Seoung
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.7-13
    • /
    • 1987
  • Indium-Tin-Oxide (ITO)/Selenium heterojunction solar cells which fabricated by vacuum deposition technique and annealing process has been investigated. Prior to the Selenium deposition, a thin tellurium layer (about $10{\AA}$) was deposited onto the ITO layers to provide a sufficient mechanical bond between the Oxide and Selenium layers. The amorphous Selenium layer was deposited onto the Te-ITO layers, and then the crystallization of the amorphous Selenium was carried out using a hot plate at about $180^{\circ}C$ for 4 min. Efficient Selenium solar cells with conversion efficiency as high as 4.52% under AM1 condition has been fabricated in polycrystalline Selenium layer ($6{\mu}m$). The optimum data in manufacturing Se solar cell was listed in table.

  • PDF

Synthesis and Characterization of New Dihydroindolo[3,2-b]indole and 5,6-Bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-Based Polymer for Bulk Heterojunction Polymer Solar Cells

  • Kranthiraja, Kakaraparthi;Gunasekar, Kumarasamy;Song, Myungkwan;Gal, Yeong-Soon;Lee, Jae Wook;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1485-1490
    • /
    • 2014
  • We have designed and developed a new ladder type tetrafused ${\pi}$-conjugated building block such as dihydroindolo[3,2-b]indole (DINI) and investigated its role as an electron rich unit. The photovoltaic properties of a new semiconducting ${\pi}$-conjugated polymer, poly[[5,10-bisoctyl-5,10-dihydroindolo[3,2-b]indole-[5,6- bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole]], represented by PDINI-OBTC8 are described. The new polymer PDINI-OBTC8 was synthesized in donor-acceptor (D-A) fashion, where fused ${\pi}$-conjugated tetracyclic DINI, and 5,6-bis(octyloxy)-4,7-di(thiophen-2-yl) benzo[c][1,2,5]thiadiazole (OBTC8) were employed as electron rich (donor) and electron deficient (acceptor) moieties, respectively. The conventional bulk heterojunction (BHJ) device structure ITO/PEDOT:PSS/PDINI-OBTC8:PCB71M/LiF/Al was utilized to fabricate polymer solar cells (PSCs), which comprises the blend of PDINI-OBTC8 and [6,6]-phenyl-$C_{71}$-butyric acid methyl ester ($PC_{71}BM$) in BHJ network. A BHJ PSC that contain PDINI-OBTC8 delivered power conversion efficiency (PCE) value of 1.68% with 1 vol% of 1,8-diidooctane (DIO) under the illumination of A.M 1.5G 100 $mW/cm^2$.

Electrical Characteristics of CdS/CdTe Heterojunction Solar Cells (CdS/CdTe 이종접합 태양전지의 전기적특성)

  • Song, Woo-Chang;Lee, Jae-Hyoung;Nam, Jun-Hyun;Park, Yong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1174-1177
    • /
    • 1995
  • In this paper, electrical properties CdS/CdTe heterojunction solar cell prepared by electron beam evaporation method were investigated. Crystal structure of CdS films deposited at substrate temperature of $50{\sim}250^{\circ}C$ was hexagonal type with preferential orientation of the (002)plane parallel to the substrate. Optical transmittance of the CdS film is increasing and resistivity is decreasing with increasing subsrate temperature. CdS/CdTe Solar cell characteristics were improved by increasing of substrate and annealing temperature. However, low efficiency due to small Jsc, Voc below 0.3 $mA/cm^2$ and 430 mV are observed. Low efficiency is contributed to be high resistance of CdTe films and contact.

  • PDF