• Title/Summary/Keyword: Heterogeneous traffic information

Search Result 108, Processing Time 0.031 seconds

A Connection Admission Control with Recursive Formula in ATM Networks (ATM 망에서 재귀 연산에 의한 연결 수락 제어)

  • Nam, Jae-Hyun;Park, Chan-Jung;Lee, Kee-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1788-1796
    • /
    • 1997
  • In this paper, we propose a new connection admission control(CAC) algorithm for traffic control in ATM network in which traffic estimation is performed based on user-specified parameters at every moment of connection request or connection release by recursive formula which makes real-time calculation possible. And traffic estimation using cell flow measurement is carried out when the number of connectioned calls does not change during a measurement reflection period. Performance analysis of the proposed method is carried out using several aspects for homogeneous and heterogeneous bursty traffic. The results showed that the proposed CAC method revealed better performance, than conventional CAC method for burst model in both utilization and QoS point of view.

  • PDF

An Efficient Rate Control Protocol for Wireless Sensor Network Handling Diverse Traffic

  • Monowar, Muhammad Mostafa;Rahman, Md. Obaidur;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10a
    • /
    • pp.130-131
    • /
    • 2007
  • Wireless Sensor Network typically incorporates diverse applications within the same network. A sensor node may have multiple sensors i.e. light, temperature, seismic etc with different transmission characteristics. Each application has different characteristics and requirements in terms of transmission rates, bandwidth, packet loss and delay demands may be initiated towards the sink. In this paper we propose Heterogeneous Traffic Oriented Rate Control Protocol (HTRCP) which ensures efficient rate control for diverse applications according to the priority specified by the sink. Moreover. HTRCP ensures the node priority based hop by hop dynamic rate adjustment for high link utilization.

  • PDF

Dimensioning leaky bucket parameters considering the cell delay variation (셀 지연 변이를 고려한 리키 버킷 계수 결정 방법)

  • 이준원;이병기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.31-38
    • /
    • 1995
  • In this paper, we consider the leaky bucket parameter dimensioning problem in the presence of the cell delay variation(CDV) which arises at the customer premises network dud to the multiplexing with other traffic streams. We consider an ATM multiplexer in which a single CBR stream and several heterogeneous VBR traffic streams are multiplexed. Choosing an MMPP model for the bursty traffic streams, we derive an (MMPP+DD)/D/1/K queueing model for the evaluation of the CDV experienced by the CBR stream. We first evaluate the equilibrium queue length distribution embedded at tagged-cell arrival-time instants, based on whcih we calcuate the inter-cell time distribution and the distribution kof the number of tagged-cell departures in an arbitrary interval. Then we apply the analysis to the dimensionging problem of the leaky bucket parameters, examining how the employed traffic model affects the determination of the bucket size. Through numerical examples, we confirm that the Poisson traffic model can underestimate the bucket size, thus causing a considerable blocking probability for compliant use cells while the MMPP model can optimally design the bucket size which keeps the blocking probability under the target value.

  • PDF

CDASA-CSMA/CA: Contention Differentiated Adaptive Slot Allocation CSMA-CA for Heterogeneous Data in Wireless Body Area Networks

  • Ullah, Fasee;Abdullah, Abdul Hanan;Abdul-Salaam, Gaddafi;Arshad, Marina Md;Masud, Farhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5835-5854
    • /
    • 2017
  • The implementation of IEEE 802.15.6 in Wireless Body Area Network (WBAN) is contention based. Meanwhile, IEEE 802.15.4 MAC provides limited 16 channels in the Superframe structure, making it unfit for N heterogeneous nature of patient's data. Also, the Beacon-enabled Carrier-Sense Multiple Access/Collision-Avoidance (CSMA/CA) scheduling access scheme in WBAN, allocates Contention-free Period (CAP) channels to emergency and non-emergency Biomedical Sensors (BMSs) using contention mechanism, increasing repetition in rounds. This reduces performance of the MAC protocol causing higher data collisions and delay, low data reliability, BMSs packet retransmissions and increased energy consumption. Moreover, it has no traffic differentiation method. This paper proposes a Low-delay Traffic-Aware Medium Access Control (LTA-MAC) protocol to provide sufficient channels with a higher bandwidth, and allocates them individually to non-emergency and emergency data. Also, a Contention Differentiated Adaptive Slot Allocation CSMA-CA (CDASA-CSMA/CA) for scheduling access scheme is proposed to reduce repetition in rounds, and assists in channels allocation to BMSs. Furthermore, an On-demand (OD) slot in the LTA-MAC to resolve the patient's data drops in the CSMA/CA scheme due to exceeding of threshold values in contentions is introduced. Simulation results demonstrate advantages of the proposed schemes over the IEEE 802.15.4 MAC and CSMA/CA scheme in terms of success rate, packet delivery delay, and energy consumption.

An Integrated QoS Management System for Large-Scale Heterogeneous IP Networks : Design and Prototype Implementation (대규모 이기종 IP 망의 통합품질관리 시스템의 설계 및 구현)

  • Choi, Tae-Sang;Chung, Hyung-Seok;Choi, Hee-Sook;Kim, Chang-Hoon;Jeong, Tae-Soo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11S
    • /
    • pp.3633-3650
    • /
    • 2000
  • Internet is no longer a network for special communities but became a global means of communication infrastructure for everyday life. People are exchanging their personal messages using e-mails, students are getting their educational aids through the web, people are buying a variety of goods from cyber shopping malls, and companies are conducting their businesses over the Internet. Recently, such an explosive growth of the traffic in the Internet raised a big concern on how to accommodate ever-changing user's needs in terms of an amount of the traffic, characteristics of the traffic, and various service quality requirements, Over provisioning can be a simple solution but it is too expensive and inefficient. Thus many new technologies to solve this very difficult puzzle have bcen introduced recently, Any single solution, however, can be insufficient and a carefully designed architecture, which integrates a group of solutions, is required. In this paper, we propose a policy-based Internet QoS provisioning, traffic engineering and perfonnance management system as our solution to this problem. Our integrated management QoS solution can provide highly responsive flow-through service provisioning, more realistic service and resource policy control based on the real network performance information, and centralized control of traffic engineering for heterogeneous networks.

  • PDF

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.

Cell Virtualization with Network Partition for Initial User Association in Software Defined Small-cell Networks

  • Sun, Guolin;Lu, Li;Ayepah-Mensah, Daniel;Fang, Xiufen;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4703-4723
    • /
    • 2018
  • In recent years, dense small cell network has been deployed to address the challenge that has resulted from the unprecendented growth of mobile data traffic and users. It has proven to be a cost efficeient solution to offload traffic from macro-cells. Software defined heterogeneous wireless network can decouple the control plane from the data plane. The control signal goes through the macro-cell while the data traffic can be offloaded by small cells. In this paper, we propose a framework for cell virtualization and user association in order to satisfy versatile requirements of multiple tenants. In the proposed framework, we propose an interference graph partioning based virtual-cell association and customized physical-cell association for multi-homed users in a software defined small cell network. The proposed user association scheme includes 3 steps: initialization, virtual-cell association and physical-cell association. Simulation results show that the proposed virtual-cell association outperforms the other schemes. For physical-cell association, the results on resource utilization and user fairness are examined for mobile users and infrastructure providers.

User Mobility Management Scheme for Effective Inter-working with Overlay Convergent Networks (중첩 융합 네트워크에서 효과적 연동을 위한 위치정보 관리방법)

  • Choi, Yu-Mi;Kim, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.83-89
    • /
    • 2012
  • In this paper, the new user mobility management scheme which can be utilized to register user's location for interworking with heterogeneous overlay convergent networks under the time-varying radio propagation environment has been proposed. Thus the user mobility management can be considered in order to model and to evaluate the behaviors of users in the overlay convergent networks. This mobility management scheme will be very useful in characterizing the user mobility behaviors and can be used to estimate the signaling traffic and frequency spectrum demands for massive data transfer for the heterogeneous overlay convergent networks.

Modeling and SINR Analysis of Dual Connectivity in Downlink Heterogeneous Cellular Networks

  • Wang, Xianling;Xiao, Min;Zhang, Hongyi;Song, Sida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5301-5323
    • /
    • 2017
  • Small cell deployment offers a low-cost solution for the boosted traffic demand in heterogeneous cellular networks (HCNs). Besides improved spatial spectrum efficiency and energy efficiency, future HCNs are also featured with the trend of network architecture convergence and feasibility for flexible mobile applications. To achieve these goals, dual connectivity (DC) is playing a more and more important role to support control/user-plane splitting, which enables maintaining fixed control channel connections for reliability. In this paper, we develop a tractable framework for the downlink SINR analysis of DC assisted HCN. Based on stochastic geometry model, the data-control joint coverage probabilities under multi-frequency and single-frequency tiering are derived, which involve quick integrals and admit simple closed-forms in special cases. Monte Carlo simulations confirm the accuracy of the expressions. It is observed that the increase in mobility robustness of DC is at the price of control channel SINR degradation. This degradation severely worsens the joint coverage performance under single-frequency tiering, proving multi-frequency tiering a more feasible networking scheme to utilize the advantage of DC effectively. Moreover, the joint coverage probability can be maximized by adjusting the density ratio of small cell and macro cell eNBs under multi-frequency tiering, though changing cell association bias has little impact on the level of the maximal coverage performance.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.