• Title/Summary/Keyword: Heterogeneous multiprocessor

Search Result 7, Processing Time 0.028 seconds

An Analysis and Simulation of sRIO for Implementation of Robot's Hetero-Multi Processor (로봇의 이기종 다중 프로세서 구현을 위한 Serial RapidIO(sRIO) 분석 및 시뮬레이션)

  • Moon, Yong-Seomn;Roh, Sang-Hyun;Jo, Kwang-Hun;Park, Jong-Kyu;Bae, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • In this paper, we propose the structure of heterogeneous multiprocessor's concept, which is the structure of the new type of the robot controller, and we introduce an integrating structure method, which is distributed multiprocessor within controller using sRIO. We also perform the computer simulation with using the sRIO IP core which was designed within FPGA as the method for implementation of integrated heterogeneous multiprocessor by sRIO communication. Thus, we verify the result.

Task Allocation Algorithm for Heterogeneous Multiprocessor Systems Using Heuristic Technique (이질형 다중 프로세서 시스템에서 휴리스틱 기법을 이용한 타스크 할당 알고리즘)

  • Im, Seon-Ho;Lee, Jong-Seong;Chae, Su-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.890-900
    • /
    • 1999
  • In homogeneous multiprocessor systems, the task allocation algorithm which equally assigns tasks to processors if possible is generally used. But this algorithm is not suitable to accomplish to accomplish effective task allocation in heterogeneous multiprocessor systems. JSQ (Join the Shortest Queue) algorithm is often used in heterogeneous multiprocessor systems. Unfortunately, JSQ algorithm is not efficient when the differences of capabilities of processors are far large. To solve this problem, we suggest a heuristic task allocation algorithm that makes use of dynamic information such as task arrival time, task service time, and number of finished tasks. The results of simulation show that the proposed heuristic allocation algorithm improves the system performance.

  • PDF

A Systematic Power and Performance Analysis Framework for Heterogeneous Multiprocessor System (이종 멀티코어 시스템의 전력 및 성능 분석을 위한 프레임워크 설계 및 구현)

  • Kim, Hyeong-Jun;Kyong, Joohyun;Lim, Sung-Soo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.315-321
    • /
    • 2014
  • Mobile computing devices such as smartphones, tablet computers have become the dominant personal computing platforms. Energy efficiency is a prime design requirement for smart devices. In order to reduce the energy consumption of the smart devices, analysis of performance and energy consumption has become important. However, so far, there is no framework for the analysis and systematic approach to improve the power consumption of the heterogeneous multi-core system. In this paper, we describe a new framework for the analysis of heterogeneous multi-core systems. Also, by use of an analysis tool, can be provide reliability and productivity of development results.

Verification Platform with ARM- and DSP-Based Multiprocessor Architecture for DVB-T Baseband Receivers

  • Cho, Koon-Shik;Chang, June-Young;Cho, Han-Jin;Cho, Jun-Dong
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.141-151
    • /
    • 2008
  • In this paper, we introduce a new verification platform with ARM- and DSP-based multiprocessor architecture. Its simple communication interface with a crossbar switch architecture is suitable for a heterogeneous multiprocessor platform. The platform is used to verify the function and performance of a DVB-T baseband receiver using hardware and software partitioning techniques with a seamless hardware/software co-verification tool. We present a dual-processor platform with an ARM926 and a Teak DSP, but it cannot satisfy the standard specification of EN 300 744 of DVB-T ETSI. Therefore, we propose a new multiprocessor strategy with an ARM926 and three Teak DSPs synchronized at 166 MHz to satisfy the required specification of DVB-T.

  • PDF

On Top-Down Design of MPEG-2 Audio Encoder

  • Park, Sung-Wook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • This paper presents a top-down approach to implement an MPEG-2 audio encoder in VLSI. As the algorithm of an MPEG-2 audio encoder is heavy-weighted and heterogeneous(to be mixture of several strategies), the encoder design process is undertaken carefully from the algorithmic level to the architectural level. Firstly, the encoding algorithm is analyzed and divided into sub-algorithms, called tasks, and the tasks are partitioned in the way of reusing the same designs. Secondly, the partitioned tasks are scheduled and synthesized to make the most efficient use of time and space. In the end, a real-time 5 channel MPEG-2 audio encoder is designed which is a heterogeneous multiprocessor system; two hardwired logic blocks and one specialized DSP processor.

Low-power heterogeneous uncore architecture for future 3D chip-multiprocessors

  • Dorostkar, Aniseh;Asad, Arghavan;Fathy, Mahmood;Jahed-Motlagh, Mohammad Reza;Mohammadi, Farah
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.759-773
    • /
    • 2018
  • Uncore components such as on-chip memory systems and on-chip interconnects consume a large amount of energy in emerging embedded applications. Few studies have focused on next-generation analytical models for future chip-multiprocessors (CMPs) that simultaneously consider the impacts of the power consumption of core and uncore components. In this paper, we propose a convex-optimization approach to design heterogeneous uncore architectures for embedded CMPs. Our convex approach optimizes the number and placement of memory banks with different technologies on the memory layer. In parallel with hybrid memory architecting, optimizing the number and placement of through silicon vias as a viable solution in building three-dimensional (3D) CMPs is another important target of the proposed approach. Experimental results show that the proposed method outperforms 3D CMP designs with hybrid and traditional memory architectures in terms of both energy delay products (EDPs) and performance parameters. The proposed method improves the EDPs by an average of about 43% compared with SRAM design. In addition, it improves the throughput by about 7% compared with dynamic RAM (DRAM) design.

BILI-Hardware/Software Partition Heuristic (BILI-하드웨어/소프트웨어 분할 휴리스틱)

  • Oh Hyun-Ok;Ha, Soon-Hoi
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.66-77
    • /
    • 2000
  • This paper presents a fast partitioning heuristic for hardware/software codesign called Best Imaginary Level-Iterative(BILI) partitioning which iteratively applies BIL heterogeneous multiprocessor scheduling heuristic to minimize the cost within the given time constraint. The proposed algorithm solves the partitioning problem with the implementation bin selection problem as well as architectures with multiple software modules. It costs about 15% less than the GCLP and at most about 5% more than the optimal solution obtained by the Integer Linear Programming(ILP) algorithm.

  • PDF