• Title/Summary/Keyword: Heterogeneous cellular networks

Search Result 65, Processing Time 0.024 seconds

A Study on USIM-based Authentication Testbed for UMTS-WLAN Handover (UMTS-WLAN간 핸드오버를 위한 USIM 기반의 인증 테스트베드에 관한 연구)

  • Ro, Kwang-Hyun;Kwon, Hye-Yeon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.66-71
    • /
    • 2009
  • In view of mutual complementary feature of wide coverage and high data rate, the interworking between 3G cellular network and WLAN is a global trend of wireless communications. This paper introduces the analytic result of an authentication mechanism for 3GPP-WLAN seamless mobility under the USIM-based authentication test-bed. In a handover process between heterogeneous networks, authentication is the main factor of handover delay. So authentication processing time should be firstly reduced. This paper describes an USTM-based EAP-AKA test-bed implemented for handover in UMTS and WLAN interworking systems. Experimental result has shown that the fast re-authentication mechanism during handover has reduced the handover delay by about 48.6%.

  • PDF

Recent advances in spatially resolved transcriptomics: challenges and opportunities

  • Lee, Jongwon;Yoo, Minsu;Choi, Jungmin
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.113-124
    • /
    • 2022
  • Single-cell RNA sequencing (scRNA-seq) has greatly advanced our understanding of cellular heterogeneity by profiling individual cell transcriptomes. However, cell dissociation from the tissue structure causes a loss of spatial information, which hinders the identification of intercellular communication networks and global transcriptional patterns present in the tissue architecture. To overcome this limitation, novel transcriptomic platforms that preserve spatial information have been actively developed. Significant achievements in imaging technologies have enabled in situ targeted transcriptomic profiling in single cells at single-molecule resolution. In addition, technologies based on mRNA capture followed by sequencing have made possible profiling of the genome-wide transcriptome at the 55-100 ㎛ resolution. Unfortunately, neither imaging-based technology nor capture-based method elucidates a complete picture of the spatial transcriptome in a tissue. Therefore, addressing specific biological questions requires balancing experimental throughput and spatial resolution, mandating the efforts to develop computational algorithms that are pivotal to circumvent technology-specific limitations. In this review, we focus on the current state-of-the-art spatially resolved transcriptomic technologies, describe their applications in a variety of biological domains, and explore recent discoveries demonstrating their enormous potential in biomedical research. We further highlight novel integrative computational methodologies with other data modalities that provide a framework to derive biological insight into heterogeneous and complex tissue organization.

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.

Receiver-Initiated Slow Start for Improving TCP Performance in Vertical Handoff (수직적 핸드오프에서의 TCP 성능향상을 위한 수신자기반 슬로우스타트)

  • Seok, Woojin;Lee, Minsun;Lee, Manhee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.8
    • /
    • pp.597-606
    • /
    • 2013
  • The performance of TCP depends on the degree of traffic congestion between the sender and the receiver. The traffic could increase, and this causes congestion which may cause trouble in data transfer. Then, TCP tries to eliminate the trouble by reducing the transfer speed with slowstart scheme. When a mobile node moves over heterogeneous wireless networks, TCP experiences dramatic change of the amount of traffic, and it performs slowstart. In this paper, we propose the efficient scheme of TCP slowstart that should performs after vertical handoff. In this scheme, TCP receiver forces slowstart, which is different form normal schemes. Its performance is better than the normal schemes in that TCP sender experiences traffic congestion and performs slowstart. We perform simulation to measure and to verify the improved performance.

Analytical Approach of Cross-Layer-Based Handoff Scheme in Heterogeneous Mobile Networks (이종의 모바일 네트워크에서 크로스 레이어 기반 핸드오버 기법의 분석적 접근법)

  • Kim, DongHwi;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.1-16
    • /
    • 2013
  • Smartphones and tablets including phone, calendar are the necessities of modern man. They are one of the MN(Mobile Node), each with wireless network capabilities. Necessities of modern human MNs are almost included cellular module available in LTE/3G and Wi-Fi module for high-speed Internet. Until now, MN mobility management is handled, but using network-based mobility management in this paper. Then, carriers can manage and maintain the network for low-cost. In addition, it was considered that use a lot of modern people with Wi-Fi and LTE/3G, and using Cross-Layer-Based handoff.