• Title/Summary/Keyword: Heterogeneous cellular networks

Search Result 65, Processing Time 0.018 seconds

User Association and Base Station Sleep Management in Dense Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2058-2074
    • /
    • 2017
  • Dense Heterogeneous Cellular Networks(HCNs) offer a promising approach to meet the target of 1000x increase in aggregate data rates in 5G wireless communication systems. However how to best utilize the available radio resources at densely deployed small cells remains an open problem as those small cells are typically unplanned. In this paper we focus on balancing loads across macro cells and small cells by offloading users to small cells, as well as dynamically switching off underutilized small cells. We propose a joint user association and base station(BS) sleep mangement(UA-BSM) scheme that proactively offloads users to a fraction of the densely deployed small cells. We propose a heuristic algorithm that iteratively solves the user association problem and puts BSs with low loads into sleep. An interference relation matrix(IRM) is constructed to help us identify the candidate BSs that can be put into sleep. User associations are then aggregated to selected small cells that remain active. Simulation results show that our proposed approach achieves load balancing across macro and small cells and reduces the number of active BSs. Numerical results show user signal to interference ratio(SINR) can be improved by small cell sleep control.

Secrecy Spectrum and Secrecy Energy Efficiency in Massive MIMO Enabled HetNets

  • Zhong, Zhihao;Peng, Jianhua;Huang, Kaizhi;Xia, Lu;Qi, Xiaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.628-649
    • /
    • 2017
  • Security and resource-saving are both demands of the fifth generation (5G) wireless networks. In this paper, we study the secrecy spectrum efficiency (SSE) and secrecy energy efficiency (SEE) of a K-tier massive multiple-input multiple-output (MIMO) enabled heterogeneous cellular network (HetNet), in which artificial noise (AN) are employed for secrecy enhancement. Assuming (i) independent Poisson point process model for the locations of base stations (BSs) of each tier as well as that of eavesdroppers, (ii) zero-forcing precoding at the macrocell BSs (MBSs), and (iii) maximum average received power-based cell selection, the tractable lower bound expressions for SSE and SEE of massive MIMO enabled HetNets are derived. Then, the influences on secrecy oriented spectrum and energy efficiency performance caused by the power allocation for AN, transmit antenna number, number of users served by each MBS, and eavesdropper density are analyzed respectively. Moreover, the analysis accuracy is verified by Monte Carlo simulations.

BandBlock: Bandwidth allocation in blockchain-empowered UAV-based heterogeneous networks

  • Kuna Venkateswarararao;Pratik Kumar;Akash Solanki;Pravati Swain
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.945-954
    • /
    • 2022
  • The 5G mobile network is promising to handle the dynamic traffic demands of user equipment (UE). Unmanned aerial vehicles (UAVs) equipped with wireless transceivers can act as flying base stations in heterogeneous networks to ensure the quality of service of UE. However, it is challenging to efficiently allocate limited bandwidth to UE due to dynamic traffic demands and low network coverage. In this study, a blockchain-enabled bandwidth allocation framework is proposed for secure bandwidth trading. Furthermore, the proposed framework is based on the Cournot oligopoly game theoretical model to provide the optimal solution; that is, bandwidth is allocated to different UE based on the available bandwidth at UAV-assisted-based stations (UBSs) with optimal profit. The Cournot oligopoly game is performed between UBSs and cellular base stations (CBSs). Utility functions for both UBSs and CBSs are introduced on the basis of the available bandwidth, total demand of CSBs, and cost of providing cellular services. The proposed framework prevents security attacks and maximizes the utility functions of UBSs and CBSs.

A Distributed Power Allocation Scheme for Base Stations Powered by Retailers with Heterogeneous Renewable Energy Sources

  • Jeon, Seung Hyun;Lee, Joohyung;Choi, Jun Kyun
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.746-756
    • /
    • 2016
  • Owing to the intermittent power generation of renewable energy sources (RESs), future wireless cellular networks are required to reliably aggregate power from retailers. In this paper, we propose a distributed power allocation (DPA) scheme for base stations (BSs) powered by retailers with heterogeneous RESs in order to deal with the unreliable power supply (UPS) problem. The goal of the proposed DPA scheme is to maximize our well-defined utility, which consists of power satisfaction and unit power costs including added costs as a non-subscriber, based on linear and quadratic cost models. To determine the optimal amount of DPA, we apply dual decomposition, which separates the master problem into sub-problems. Optimal power allocation from each retailer can be obtained by iteratively coordinating between the BSs and retailers. Finally, through a mathematical analysis, we show that the proposed DPA can overcome the UPS for BSs powered from heterogeneous RESs.

The Protocol stack for interconnecting cellular network and heterogeneous networks (셀룰러 망과 이종망 연동을 위한 프로토콜 구조)

  • Han, Jong-Soo;Oh, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.461-463
    • /
    • 2006
  • 무선 인터넷의 급속한 성장에 따라 사용영역과 그 범위가 점차 확대되고 있으며, 사용자들은 멀티미디어 동화상 등 점차 많은 대역폭을 요구하는 서비스를 원하고 있다. 이에 따라 다양한 무선 인터넷을 사용할 수 있는 네트리크가 상용화 되어 있다. 그러나 상용화되어 있는 다양한 네트워크 중에 셀룰러 네트워크를 이용하는 경우에는 다양한 멀티미디어 서비스를 지원하기에 한계가 있고, 이종 망을 사용하는 경우에는 이동성을 제공해 줄 수 없다는 문제점이 있다. 따라서 셀룰러 네트워크와 고속의 다운로드를 받을 수 있는 이종 망을 연동하여 사용할 수 있다면 대역폭을 많이 할당할 수도 있고, 이동성도 고려한 데이터 전송이 가능하다. 따라서 이러한 두 망을 연동하여 사용할 수 있는 메커니즘 연구가 되고 있는데 아직까지 상용화는 하지 못하고 있다. 본 논문은 cdma2000 lx EV-DO (Evolution Data Only) 망과 이종 망을 연동할 수 있는 메커니즘을 제안하고자 한다. 이러한 메커니즘을 활용한다면 기존의 시스템을 그대로 활용하며 무선 인터넷의 다양한 서비스를 사용자의 요구에 부합하며 사용할 수 있으므로 다양한 멀티미디어 서비스를 이용할 수 있다.

  • PDF

Matching game based resource allocation algorithm for energy-harvesting small cells network with NOMA

  • Wang, Xueting;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5203-5217
    • /
    • 2018
  • In order to increase the capacity and improve the spectrum efficiency of wireless communication systems, this paper proposes a rate-based two-sided many-to-one matching game algorithm for energy-harvesting small cells with non-orthogonal multiple access (NOMA) in heterogeneous cellular networks (HCN). First, we use a heuristic clustering based channel allocation algorithm to assign channels to small cells and manage the interference. Then, aiming at addressing the user access problem, this issue is modeled as a many-to-one matching game with the rate as its utility. Finally, considering externality in the matching game, we propose an algorithm that involves swap-matchings to find the optimal matching and to prove its stability. Simulation results show that this algorithm outperforms the comparing algorithm in efficiency and rate, in addition to improving the spectrum efficiency.

Adaptive Online Load Balancing Algorithm for Multimedia Service in Cellular Networks (셀룰러 네트워크 상에서 멀티미디어 서비스 제공을 위한 효율적인 온라인 부하분산 기법에 대한 연구)

  • Kim, Sung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12B
    • /
    • pp.811-817
    • /
    • 2005
  • Efficient bandwidth management is necessary in order to provide high quality service to users in a multimedia wireless/mobile network. In this paper, I propose an on-line load balancing algorithm with preemption. This technique is able to balance the traffic load among cells accommodating heterogeneous multimedia services while ensuring efficient bandwidth utilization. The most important features of my algorithm are its adaptability, flexibility and responsiveness to current network conditions. In addition, my online scheme to control bandwidth adaptively is a cell-oriented approach. This approach has low complexity making it practical for real cellular networks. Simulation results indicate the superior performance of my algorithm.

Dynamic Frequency Reuse Scheme Based on Traffic Load Ratio for Heterogeneous Cellular Networks (이종 셀룰러 네트워크 환경에서 트래픽 비율에 따른 동적 주파수 재사용 기법)

  • Chung, Sungmoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2539-2548
    • /
    • 2015
  • Overcoming inter-cell interference and spectrum scarcity are major issues in heterogeneous cellular networks. Static Frequency reuse schemes have been proposed as an effective way to manage the spectrum and reduce ICI(Inter cell Interference) in cellular networks. In a kind of static frequency reuse scheme, the allocations of transmission power and subcarriers in each cell are fixed prior to system deployment. This limits the potential performance of the static frequency reuse scheme. Also, most of dynamic frequency reuse schemes did not consider small cell and the network environment when the traffic load of each cell is heavy and non-uniform. In this paper, we propose an inter-cell resource allocation algorithm that dynamically optimizes subcarrier allocations for the multi-cell heterogeneous networks. The proposed dynamic frequency reuse scheme first finds the subcarrier usage in each cell-edge by using the exhaustive search and allocates subcarrier for all the cells except small cells. After that it allocates subcarrier for the small cell and then iteratively repeats the process. Proposed dynamic frequency reuse scheme performs better than previous frequency reuse schemes in terms of the throughput by improving the spectral efficiency due to it is able to adapt the network environment immediately when the traffic load of each cell is heavy and non-uniform.

A Cognitive Beamforming Scheme for Cross-Tier Interference Mitigation in Heterogeneous Cellular Networks (이종 셀룰러 망에서 계층 간 간섭완화를 위한 인지 빔형성 기법)

  • Seo, Ju-yeol;Park, Seungyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1387-1401
    • /
    • 2016
  • When a closed access policy in which only an authorized user is allowed to access to a given base station (BS) has been employed in heterogeneous cellular networks, a macro-cell user is used to experience strong cross-tier interference from its adjacent small-cell BSs to which the user is not allowed to access. To mitigate this problem, it has been proposed that a small-cell BS employs a beamforming vector which is orthogonal to the channel of the victim user. However, this technique requires considerable mutual exchange of information among the macro-cell BS, the macro-cell user, and the small-cell BS. In this paper, we propose a cognitive beamforming scheme, in which a small-cell BS employs the beamforming orthogonal to the victim users' channel without any explicit mutual information exchange. Particularly, the small-cell BS finds small- and macro-cell users experiencing the co-tier and cross-tier interferences from it, respectively. Then, it employs a beamforming which is orthogonal to the victim users' channels to mitigate the co-tier and cross-tier interferences. Using the system-level simulation, we demonstrate that the proposed scheme effectively mitigates the cross-tier interference problem.

The Single-Cell Revelation of Thermogenic Adipose Tissue

  • Qi, Yue;Hui, Xiaoyan Hannah
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.673-684
    • /
    • 2022
  • The past two decades have witnessed an upsurge in the appreciation of adipose tissue (AT) as an immunometabolic hub harbouring heterogeneous cell populations that collectively fine-tune systemic metabolic homeostasis. Technological advancements, especially single-cell transcriptomics, have offered an unprecedented opportunity for dissecting the sophisticated cellular networks and compositional dynamics underpinning AT remodelling. The "re-discovery" of functional brown adipose tissue dissipating heat energy in human adults has aroused tremendous interest in exploiting the mechanisms underpinning the engagement of AT thermogenesis for combating human obesity. In this review, we aim to summarise and evaluate the use of single-cell transcriptomics that contribute to a better appreciation of the cellular plasticity and intercellular crosstalk in thermogenic AT.