DOI QR코드

DOI QR Code

The Single-Cell Revelation of Thermogenic Adipose Tissue

  • Qi, Yue (School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong) ;
  • Hui, Xiaoyan Hannah (School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong)
  • Received : 2022.06.03
  • Accepted : 2022.07.11
  • Published : 2022.10.31

Abstract

The past two decades have witnessed an upsurge in the appreciation of adipose tissue (AT) as an immunometabolic hub harbouring heterogeneous cell populations that collectively fine-tune systemic metabolic homeostasis. Technological advancements, especially single-cell transcriptomics, have offered an unprecedented opportunity for dissecting the sophisticated cellular networks and compositional dynamics underpinning AT remodelling. The "re-discovery" of functional brown adipose tissue dissipating heat energy in human adults has aroused tremendous interest in exploiting the mechanisms underpinning the engagement of AT thermogenesis for combating human obesity. In this review, we aim to summarise and evaluate the use of single-cell transcriptomics that contribute to a better appreciation of the cellular plasticity and intercellular crosstalk in thermogenic AT.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China (NSFC) - Excellent Young Scientists Fund (Hong Kong and Macau) (81922079) and General Research Fund (17121520) (to X.H.H.).

References

  1. Angueira, A.R., Sakers, A.P., Holman, C.D., Cheng, L., Arbocco, M.N., Shamsi, F., Lynes, M.D., Shrestha, R., Okada, C., Batmanov, K., et al. (2021). Defining the lineage of thermogenic perivascular adipose tissue. Nat. Metab. 3, 469-484. https://doi.org/10.1038/s42255-021-00380-0
  2. Angueira, A.R., Shapira, S.N., Ishibashi, J., Sampat, S., Sostre-Colon, J., Emmett, M.J., Titchenell, P.M., Lazar, M.A., Lim, H.W., and Seale, P. (2020). Early B cell factor activity controls developmental and adaptive thermogenic gene programming in adipocytes. Cell Rep. 30, 2869-2878. e4. https://doi.org/10.1016/j.celrep.2020.02.023
  3. Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., Chak, S., Naikawadi, R.P., Wolters, P.J., Abate, A.R., et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163-172. https://doi.org/10.1038/s41590-018-0276-y
  4. Argelaguet, R., Clark, S.J., Mohammed, H., Stapel, L.C., Krueger, C., Kapourani, C.A., Imaz-Rosshandler, I., Lohoff, T., Xiang, Y., Hanna, C.W., et al. (2019). Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487-491. https://doi.org/10.1038/s41586-019-1825-8
  5. Becher, T., Palanisamy, S., Kramer, D.J., Eljalby, M., Marx, S.J., Wibmer, A.G., Butler, S.D., Jiang, C.S., Vaughan, R., Schoder, H., et al. (2021). Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58-65. https://doi.org/10.1038/s41591-020-1126-7
  6. Brestoff, J.R., Kim, B.S., Saenz, S.A., Stine, R.R., Monticelli, L.A., Sonnenberg, G.F., Thome, J.J., Farber, D.L., Lutfy, K., Seale, P., et al. (2015). Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242-246. https://doi.org/10.1038/nature14115
  7. Bukowiecki, L.J., Geloen, A., and Collet, A.J. (1986). Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation. Am. J. Physiol. 250(6 Pt 1), C880-C887. https://doi.org/10.1152/ajpcell.1986.250.6.C880
  8. Burl, R.B., Ramseyer, V.D., Rondini, E.A., Pique-Regi, R., Lee, Y.H., and Granneman, J.G. (2018). Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 28, 300-309.e4. https://doi.org/10.1016/j.cmet.2018.05.025
  9. Cadrin, M., Tolszczuk, M., Guy, J., Pelletier, G., Freeman, K.B., and Bukowiecki, L.J. (1985). Immunohistochemical identification of the uncoupling protein in rat brown adipose tissue. J. Histochem. Cytochem. 33, 150-154. https://doi.org/10.1177/33.2.3881519
  10. Cannon, B. and Nedergaard, J. (2004). Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277-359. https://doi.org/10.1152/physrev.00015.2003
  11. Carpentier, A.C., Blondin, D.P., Virtanen, K.A., Richard, D., Haman, F., and Turcotte, E.E. (2018). Brown adipose tissue energy metabolism in humans. Front. Endocrinol. (Lausanne) 9, 447. https://doi.org/10.3389/fendo.2018.00447
  12. Chen, Y., Ikeda, K., Yoneshiro, T., Scaramozza, A., Tajima, K., Wang, Q., Kim, K., Shinoda, K., Sponton, C.H., Brown, Z., et al. (2019). Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature 565, 180-185. https://doi.org/10.1038/s41586-018-0801-z
  13. Chondronikola, M., Volpi, E., Borsheim, E., Porter, C., Saraf, M.K., Annamalai, P., Yfanti, C., Chao, T., Wong, D., Shinoda, K., et al. (2016). Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab. 23, 1200-1206. https://doi.org/10.1016/j.cmet.2016.04.029
  14. Cinti, S. (2018). Murine brown adipose tissue. In Obesity, Type 2 Diabetes and the Adipose Organ: A Pictorial Atlas from Research to Clinical Applications, S. Cinti, ed. (Cham, Switzerland: Springer International Publishing), pp. 13-79.
  15. Cohen, P. and Kajimura, S. (2021). The cellular and functional complexity of thermogenic fat. Nat. Rev. Mol. Cell Biol. 22, 393-409. https://doi.org/10.1038/s41580-021-00350-0
  16. Daien, C.I., Tan, J., Audo, R., Mielle, J., Quek, L.E., Krycer, J.R., Angelatos, A., Duraes, M., Pinget, G., Ni, D., et al. (2021). Gut-derived acetate promotes B10 cells with antiinflammatory effects. JCI Insight 6, e144156. https://doi.org/10.1172/jci.insight.144156
  17. Ding, J., Adiconis, X., Simmons, S.K., Kowalczyk, M.S., Hession, C.C., Marjanovic, N.D., Hughes, T.K., Wadsworth, M.H., Burks, T., Nguyen, L.T., et al. (2020). Systematic comparison of single-cell and single-nucleus RNAsequencing methods. Nat. Biotechnol. 38, 737-746. https://doi.org/10.1038/s41587-020-0465-8
  18. Duerre, D.J. and Galmozzi, A. (2022). Deconstructing adipose tissue heterogeneity one cell at a time. Front. Endocrinol. (Lausanne) 13, 847291. https://doi.org/10.3389/fendo.2022.847291
  19. Emont, M.P., Jacobs, C., Essene, A.L., Pant, D., Tenen, D., Colleluori, G., Di Vincenzo, A., Jorgensen, A.M., Dashti, H., Stefek, A., et al. (2022). A singlecell atlas of human and mouse white adipose tissue. Nature 603, 926-933. https://doi.org/10.1038/s41586-022-04518-2
  20. Gallerand, A., Stunault, M.I., Merlin, J., Luehmann, H.P., Sultan, D.H., Firulyova, M.M., Magnone, V., Khedher, N., Jalil, A., Dolfi, B., et al. (2021). Brown adipose tissue monocytes support tissue expansion. Nat. Commun. 12, 5255. https://doi.org/10.1038/s41467-021-25616-1
  21. Gu, P., Hui, X., Zheng, Q., Gao, Y., Jin, L., Jiang, W., Zhou, C., Liu, T., Huang, Y., Liu, Q., et al. (2021). Mitochondrial uncoupling protein 1 antagonizes atherosclerosis by blocking NLRP3 inflammasome-dependent interleukin1beta production. Sci. Adv. 7, eabl4024. https://doi.org/10.1126/sciadv.abl4024
  22. Hagberg, C.E., Li, Q., Kutschke, M., Bhowmick, D., Kiss, E., Shabalina, I.G., Harms, M.J., Shilkova, O., Kozina, V., Nedergaard, J., et al. (2018). Flow cytometry of mouse and human adipocytes for the analysis of browning and cellular heterogeneity. Cell Rep. 24, 2746-2756.e5. https://doi.org/10.1016/j.celrep.2018.08.006
  23. Hankir, M.K. and Klingenspor, M. (2018). Brown adipocyte glucose metabolism: a heated subject. EMBO Rep. 19, e46404. https://doi.org/10.15252/embr.201846404
  24. Henriques, F., Bedard, A.H., Guilherme, A., Kelly, M., Chi, J., Zhang, P., Lifshitz, L.M., Bellve, K., Rowland, L.A., Yenilmez, B., et al. (2020). Single-cell RNA profiling reveals adipocyte to macrophage signaling sufficient to enhance thermogenesis. Cell Rep. 32, 107998. https://doi.org/10.1016/j.celrep.2020.107998
  25. Himms-Hagen, J., Melnyk, A., Zingaretti, M.C., Ceresi, E., Barbatelli, G., and Cinti, S. (2000). Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 279, C670-C681. https://doi.org/10.1152/ajpcell.2000.279.3.C670
  26. Hu, B., Jin, C., Zeng, X., Resch, J.M., Jedrychowski, M.P., Yang, Z., Desai, B.N., Banks, A.S., Lowell, B.B., Mathis, D., et al. (2020). γδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610-614. https://doi.org/10.1038/s41586-020-2028-z
  27. Hu, J., Kyrou, I., Tan, B.K., Dimitriadis, G.K., Ramanjaneya, M., Tripathi, G., Patel, V., James, S., Kawan, M., Chen, J., et al. (2016). Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in brown adipocytes. Endocrinology 157, 1881-1894. https://doi.org/10.1210/en.2015-1944
  28. Huang, Y., Zhou, J.H., Zhang, H., Canfran-Duque, A., Singh, A.K., Perry, R.J., Shulman, G.I., Fernandez-Hernando, C., and Min, W. (2022). Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. J. Clin. Invest. 132, e148852. https://doi.org/10.1172/JCI148852
  29. Ikeda, K., Kang, Q., Yoneshiro, T., Camporez, J.P., Maki, H., Homma, M., Shinoda, K., Chen, Y., Lu, X., Maretich, P., et al. (2017). UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454-1465. https://doi.org/10.1038/nm.4429
  30. Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A., et al. (2014). Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776-779. https://doi.org/10.1126/science.1247651
  31. Jespersen, N.Z., Feizi, A., Andersen, E.S., Heywood, S., Hattel, H.B., Daugaard, S., Peijs, L., Bagi, P., Feldt-Rasmussen, B., Schultz, H.S., et al. (2019). Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol. Metab. 24, 30-43. https://doi.org/10.1016/j.molmet.2019.03.005
  32. Kajimura, S., Spiegelman, B.M., and Seale, P. (2015). Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546-559. https://doi.org/10.1016/j.cmet.2015.09.007
  33. Karlina, R., Lutter, D., Miok, V., Fischer, D., Altun, I., Schottl, T., Schorpp, K., Israel, A., Cero, C., Johnson, J.W., et al. (2020). Identification and characterization of distinct brown adipocyte subtypes in C57BL/6J mice. Life Sci. Alliance 4, e202000924.
  34. Kazak, L., Chouchani, E.T., Jedrychowski, M.P., Erickson, B.K., Shinoda, K., Cohen, P., Vetrivelan, R., Lu, G.Z., Laznik-Bogoslavski, D., Hasenfuss, S.C., et al. (2015). A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643-655. https://doi.org/10.1016/j.cell.2015.09.035
  35. Kohlgruber, A.C., Gal-Oz, S.T., LaMarche, N.M., Shimazaki, M., Duquette, D., Koay, H.F., Nguyen, H.N., Mina, A.I., Paras, T., Tavakkoli, A., et al. (2018). γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19, 464-474.
  36. Kriszt, R., Arai, S., Itoh, H., Lee, M.H., Goralczyk, A.G., Ang, X.M., Cypess, A.M., White, A.P., Shamsi, F., Xue, R., et al. (2017). Optical visualisation of thermogenesis in stimulated single-cell brown adipocytes. Sci. Rep. 7, 1383. https://doi.org/10.1038/s41598-017-00291-9
  37. Lahnemann, D., Koster, J., Szczurek, E., McCarthy, D.J., Hicks, S.C., Robinson, M.D., Vallejos, C.A., Campbell, K.R., Beerenwinkel, N., Mahfouz, A., et al. (2020). Eleven grand challenges in single-cell data science. Genome Biol. 21, 31. https://doi.org/10.1186/s13059-020-1926-6
  38. Lee, M.W., Odegaard, J.I., Mukundan, L., Qiu, Y., Molofsky, A.B., Nussbaum, J.C., Yun, K., Locksley, R.M., and Chawla, A. (2015a). Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74-87. Lee, Y.H., Petkova, A.P., Konkar, A.A., and Granneman, J.G. (2015b). Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 29, 286-299. https://doi.org/10.1096/fj.14-263038
  39. Li, C., Menoret, A., Farragher, C., Ouyang, Z., Bonin, C., Holvoet, P., Vella, A.T., and Zhou, B. (2019). Single cell transcriptomics based-MacSpectrum reveals novel macrophage activation signatures in diseases. JCI Insight 5, e126453.
  40. Long, J.Z., Svensson, K.J., Tsai, L., Zeng, X., Roh, H.C., Kong, X., Rao, R.R., Lou, J., Lokurkar, I., Baur, W., et al. (2014). A smooth muscle-like origin for beige adipocytes. Cell Metab. 19, 810-820. https://doi.org/10.1016/j.cmet.2014.03.025
  41. Lynch, L., Hogan, A.E., Duquette, D., Lester, C., Banks, A., LeClair, K., Cohen, D.E., Ghosh, A., Lu, B., Corrigan, M., et al. (2016). iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy. Cell Metab. 24, 510-519. https://doi.org/10.1016/j.cmet.2016.08.003
  42. Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., et al. (2015). Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734. https://doi.org/10.1038/ncomms7734
  43. Makwana, K., Chodavarapu, H., Morones, N., Chi, J., Barr, W., Novinbakht, E., Wang, Y., Nguyen, P.T., Jovanovic, P., Cohen, P., et al. (2021). Sensory neurons expressing calcitonin gene-related peptide α regulate adaptive thermogenesis and diet-induced obesity. Mol. Metab. 45, 101161. https://doi.org/10.1016/j.molmet.2021.101161
  44. McLaughlin, C.N., Qi, Y., Quake, S.R., Luo, L., and Li, H. (2022). Isolation and RNA sequencing of single nuclei from Drosophila tissues. STAR Protoc. 3, 101417. https://doi.org/10.1016/j.xpro.2022.101417
  45. Meng, X., Qian, X., Ding, X., Wang, W., Yin, X., Zhuang, G., and Zeng, W. (2022). Eosinophils regulate intra-adipose axonal plasticity. Proc. Natl. Acad. Sci. U. S. A. 119, e2112281119. https://doi.org/10.1073/pnas.2112281119
  46. Mills, E.L., Harmon, C., Jedrychowski, M.P., Xiao, H., Garrity, R., Tran, N.V., Bradshaw, G.A., Fu, A., Szpyt, J., Reddy, A., et al. (2021). UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nat. Metab. 3, 604-617. https://doi.org/10.1038/s42255-021-00389-5
  47. Nahmgoong, H., Jeon, Y.G., Park, E.S., Choi, Y.H., Han, S.M., Park, J., Ji, Y., Sohn, J.H., Han, J.S., Kim, Y.Y., et al. (2022). Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab. 34, 458-472.e6. https://doi.org/10.1016/j.cmet.2021.11.014
  48. Nahon, K.J., Janssen, L.G.M., Sardjoe Mishre, A.S.D., Bilsen, M.P., Eijk, J.A., Botani, K., Overduin, L.A., Ruiz, J.R., Burakiewicz, J., Dzyubachyk, O., et al. (2020). The effect of mirabegron on energy expenditure and brown adipose tissue in healthy lean South Asian and Europid men. Diabetes Obes. Metab. 22, 2032-2044. https://doi.org/10.1111/dom.14120
  49. Nanduri, R. (2021). Epigenetic regulators of white adipocyte browning. Epigenomes 5, 3. https://doi.org/10.3390/epigenomes5010003
  50. Nedergaard, J., Wang, Y., and Cannon, B. (2019). Cell proliferation and apoptosis inhibition: essential processes for recruitment of the full thermogenic capacity of brown adipose tissue. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 51-58. https://doi.org/10.1016/j.bbalip.2018.06.013
  51. Oguri, Y., Shinoda, K., Kim, H., Alba, D.L., Bolus, W.R., Wang, Q., Brown, Z., Pradhan, R.N., Tajima, K., Yoneshiro, T., et al. (2020). CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling. Cell 182, 563-577.e20. https://doi.org/10.1016/j.cell.2020.06.021
  52. Onogi, Y. and Ussar, S. (2022). Regulatory networks determining substrate utilization in brown adipocytes. Trends Endocrinol. Metab. 33, 493-506. https://doi.org/10.1016/j.tem.2022.04.001
  53. Rabhi, N., Belkina, A.C., Desevin, K., Cortez, B.N., and Farmer, S.R. (2020). Shifts of immune cell populations differ in response to different effectors of beige remodeling of adipose tissue. iScience 23, 101765. https://doi.org/10.1016/j.isci.2020.101765
  54. Rajbhandari, P., Arneson, D., Hart, S.K., Ahn, I.S., Diamante, G., Santos, L.C., Zaghari, N., Feng, A.C., Thomas, B.J., Vergnes, L., et al. (2019). Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. Elife 8, e49501. https://doi.org/10.7554/eLife.49501
  55. Ramirez, A.K., Dankel, S.N., Rastegarpanah, B., Cai, W., Xue, R., Crovella, M., Tseng, Y.H., Kahn, C.R., and Kasif, S. (2020). Single-cell transcriptional networks in differentiating preadipocytes suggest drivers associated with tissue heterogeneity. Nat. Commun. 11, 2117. https://doi.org/10.1038/s41467-020-16019-9
  56. Rao, R.R., Long, J.Z., White, J.P., Svensson, K.J., Lou, J., Lokurkar, I., Jedrychowski, M.P., Ruas, J.L., Wrann, C.D., Lo, J.C., et al. (2014). Meteorinlike is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279-1291. https://doi.org/10.1016/j.cell.2014.03.065
  57. Razzoli, M., Frontini, A., Gurney, A., Mondini, E., Cubuk, C., Katz, L.S., Cero, C., Bolan, P.J., Dopazo, J., Vidal-Puig, A., et al. (2015). Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Mol. Metab. 5, 19-33.
  58. Roh, H.C., Tsai, L.T.Y., Shao, M., Tenen, D., Shen, Y., Kumari, M., Lyubetskaya, A., Jacobs, C., Dawes, B., Gupta, R.K., et al. (2018). Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cell Metab. 27, 1121-1137.e5. https://doi.org/10.1016/j.cmet.2018.03.005
  59. Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z., Graybuck, L.T., Peeler, D.J., Mukherjee, S., Chen, W., et al. (2018). Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176-182. https://doi.org/10.1126/science.aam8999
  60. Rosina, M., Ceci, V., Turchi, R., Chuan, L., Borcherding, N., Sciarretta, F., Sanchez-Diaz, M., Tortolici, F., Karlinsey, K., Chiurchiu, V., et al. (2022). Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metab. 34, 533-548.e12. https://doi.org/10.1016/j.cmet.2022.02.016
  61. Ryu, V., Garretson, J.T., Liu, Y., Vaughan, C.H., and Bartness, T.J. (2015). Brown adipose tissue has sympathetic-sensory feedback circuits. J. Neurosci. 35, 2181-2190. https://doi.org/10.1523/JNEUROSCI.3306-14.2015
  62. Sakiyama, H., Li, L., Kuwahara-Otani, S., Nakagawa, T., Eguchi, H., Yoshihara, D., Shinohara, M., Fujiwara, N., and Suzuki, K. (2021). A lack of ChREBP inhibits mitochondrial cristae formation in brown adipose tissue. Mol. Cell. Biochem. 476, 3577-3590. https://doi.org/10.1007/s11010-021-04178-2
  63. Shamsi, F., Piper, M., Ho, L.L., Huang, T.L., Gupta, A., Streets, A., Lynes, M.D., and Tseng, Y.H. (2021). Vascular smooth muscle-derived Trpv1+ progenitors are a source of cold-induced thermogenic adipocytes. Nat. Metab. 3, 485-495. https://doi.org/10.1038/s42255-021-00373-z
  64. Shao, M., Ishibashi, J., Kusminski, C.M., Wang, Q.A., Hepler, C., Vishvanath, L., MacPherson, K.A., Spurgin, S.B., Sun, K., Holland, W.L., et al. (2016). Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab. 23, 1167-1184. https://doi.org/10.1016/j.cmet.2016.04.023
  65. Shinoda, K., Luijten, I.H.N., Hasegawa, Y., Hong, H., Sonne, S.B., Kim, M., Xue, R., Chondronikola, M., Cypess, A.M., Tseng, Y., et al. (2015). Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 21, 389-394. https://doi.org/10.1038/nm.3819
  66. Song, A., Dai, W., Jang, M.J., Medrano, L., Li, Z., Zhao, H., Shao, M., Tan, J., Li, A., Ning, T., et al. (2020). Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. J. Clin. Invest. 130, 247-257.
  67. Spaethling, J.M., Sanchez-Alavez, M., Lee, J., Xia, F.C., Dueck, H., Wang, W., Fisher, S.A., Sul, J.Y., Seale, P., Kim, J., et al. (2016). Single-cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB J. 30, 81-92. https://doi.org/10.1096/fj.15-273797
  68. Sun, L., Laurila, S., Lahesmaa, M., Rebelos, E., Virtanen, K.A., Schnabl, K., Klingenspor, M., Nummenmaa, L., and Nuutila, P. (2022). Secretin modulates appetite via brown adipose tissue - brain axis. BioRxiv, https://doi.org/10.1101/2022.05.26.493657
  69. Sun, W., Dong, H., Balaz, M., Slyper, M., Drokhlyansky, E., Colleluori, G., Giordano, A., Kovanicova, Z., Stefanicka, P., Balazova, L., et al. (2020). snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98-102. https://doi.org/10.1038/s41586-020-2856-x
  70. Sun, W., Modica, S., Dong, H., and Wolfrum, C. (2021). Plasticity and heterogeneity of thermogenic adipose tissue. Nat. Metab. 3, 751-761. https://doi.org/10.1038/s42255-021-00417-4
  71. Sun, W., Zhao, X., Wang, Z., Chu, Y., Mao, L., Lin, S., Gao, X., Song, Y., Hui, X., Jia, S., et al. (2019). Tbx15 is required for adipocyte browning induced by adrenergic signaling pathway. Mol. Metab. 28, 48-57. https://doi.org/10.1016/j.molmet.2019.07.004
  72. Svensson, V., Vento-Tormo, R., and Teichmann, S.A. (2018). Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599-604. https://doi.org/10.1038/nprot.2017.149
  73. Szallasi, A., Cortright, D.N., Blum, C.A., and Eid, S.R. (2007). The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-ofconcept. Nat. Rev. Drug Discov. 6, 357-372. https://doi.org/10.1038/nrd2280
  74. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., et al. (2009). mRNA-Seq wholetranscriptome analysis of a single cell. Nat. Methods 6, 377-382. https://doi.org/10.1038/nmeth.1315
  75. Trim, W.V. and Lynch, L. (2022). Immune and non-immune functions of adipose tissue leukocytes. Nat. Rev. Immunol. 22, 371-386. https://doi.org/10.1038/s41577-021-00635-7
  76. Villarroya, F., Cereijo, R., Villarroya, J., and Giralt, M. (2017). Brown adipose tissue as a secretory organ. Nat. Rev. Endocrinol. 13, 26-35. https://doi.org/10.1038/nrendo.2016.136
  77. Wang, H., Liu, L., Lin, J.Z., Aprahamian, T.R., and Farmer, S.R. (2016). Browning of white adipose tissue with roscovitine induces a distinct population of UCP1(+) adipocytes. Cell Metab. 24, 835-847. https://doi.org/10.1016/j.cmet.2016.10.005
  78. Wang, Q.A., Tao, C., Gupta, R.K., and Scherer, P.E. (2013). Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338-1344. https://doi.org/10.1038/nm.3324
  79. Wang, T., Sharma, A.K., and Wolfrum, C. (2022). Novel insights into adipose tissue heterogeneity. Rev. Endocr. Metab. Disord. 23, 5-12. https://doi.org/10.1007/s11154-021-09703-8
  80. Wang, W., Kissig, M., Rajakumari, S., Huang, L., Lim, H.W., Won, K.J., and Seale, P. (2014). Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc. Natl. Acad. Sci. U. S. A. 111, 14466-14471. https://doi.org/10.1073/pnas.1412685111
  81. Wang, Y.N., Tang, Y., He, Z., Ma, H., Wang, L., Liu, Y., Yang, Q., Pan, D., Zhu, C., Qian, S., et al. (2021). Slit3 secreted from M2-like macrophages increases sympathetic activity and thermogenesis in adipose tissue. Nat. Metab. 3, 1536-1551. https://doi.org/10.1038/s42255-021-00482-9
  82. Ye, H., Feng, B., Wang, C., Saito, K., Yang, Y., Ibrahimi, L., Schaul, S., Patel, N., Saenz, L., Luo, P., et al. (2022). An estrogen-sensitive hypothalamusmidbrain neural circuit controls thermogenesis and physical activity. Sci. Adv. 8, eabk0185. https://doi.org/10.1126/sciadv.abk0185
  83. Yoneshiro, T., Wang, Q., Tajima, K., Matsushita, M., Maki, H., Igarashi, K., Dai, Z., White, P.J., McGarrah, R.W., Ilkayeva, O.R., et al. (2019). BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 572, 614-619. https://doi.org/10.1038/s41586-019-1503-x
  84. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017). Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049. https://doi.org/10.1038/ncomms14049
  85. Zheng, R., Zhang, Y., Tsuji, T., Zhang, L., Tseng, Y.H., and Chen, K. (2022). MEBOCOST: metabolic cell-cell communication modeling by single cell transcriptome. BioRxiv, https://doi.org/10.1101/2022.05.30.494067
  86. Zhou, H., Peng, X., Hu, J., Wang, L., Luo, H., Zhang, J., Zhang, Y., Li, G., Ji, Y., Zhang, J., et al. (2021). DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-γ production. Nat. Commun. 12, 326. https://doi.org/10.1038/s41467-020-20665-4