• Title/Summary/Keyword: Heterogeneous Networks

Search Result 731, Processing Time 0.023 seconds

An Algorithm for Optimal Selection of Communications for Smart Lighting in Heterogeneous Networks (이기종 통신 기반 스마트 조명을 위한 최적 통신 방식 선택 알고리즘)

  • Hong, Seung Gwan;Lee, Sun Yui;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • In this paper, we propose an algorithm for optimal selection of communications for smart lighting in heterogeneous networks. The smart lighting can be used for information communications and lighting simultaneously. To improve BER performance of smart lighting in heterogeneous networks, it adaptively selects a communication method among OCC, Wi-Fi, BLE based on distance between sensors and smart lightings, low power consumption for user requirements, operating time of smart lighting in Line-of-Sight(LOS)/Non-LOS channels. Thus, simulation results demonstrate effectiveness of the proposed algorithm contrary to baseline methods in LOS/NLOS channels.

A TCP Fairness Improvement Scheme for Wired and Wireless Heterogeneous Networks (유무선 혼합 네트워크에서의 TCP Fairness 향상 기법)

  • Cho, Sung-Joon;Kim, Seong-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.34-40
    • /
    • 2006
  • Multiple wireless devices in wired and wireless heterogeneous networks communicate with counterparts via a single Access Point (AP). In this case, the AP becomes a bottleneck of the network, therefore buffer overflows occur frequently and result in TCP performance degradation. In this paper, the new algorithm that prevents buffer overflows at AP and enhances TCP fairness is proposed. Depending on the buffer usage of AP, the new algorithm adaptively controls each TCP senders' transmission rate, prevents buffer overflows and thus guarantees improved TCP fairness. It is proved that the algorithm makes better of TCP throughput and fairness by preventing buffer overflows.

  • PDF

Analytical Evaluation of Almost Blank Subframes for Heterogeneous Networks (이종 네트워크를 위한 Almost Blank Subframes의 성능 분석)

  • Kim, Seung-Yeon;Lee, Hyong-Woo;Ryu, Seung-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.240-246
    • /
    • 2013
  • In heterogeneous networks, the almost blank subframes (ABS) for inter-cell interference coordination (ICIC), which can be protected from the CCI due to unutilized subframes (i.e., ABS) is proposed. However, the analytical model for ABS-based systems has not been fully studied yet. In this paper, we derive a new analytical model to evaluate the performance of ABS-based systems. In an analytic model, we assume that each carrier in multicarrier systems, such as in OFDMA, is subject to large-scale fading, which is independent of other carriers. As a performance measure, we present the cumulative distribution function (CDF) for the effective SINR. We show the accuracy of the analytical model via simulation results.

Fast Mobility Management Method Using Multi-Casting Tunneling in Heterogeneous Wireless Networks (이기종 무선 네트워크에서 멀티 캐스팅 터널링을 이용한 이동성 관리 방법)

  • Chun, Seung-Man;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.69-77
    • /
    • 2010
  • This paper presents a fast IP mobility management scheme in heterogeneous networks using the multiple wireless network interlaces. More specifically, in order to minimize the packet loss and handover latency due to handover, the E-HMIPv6, IETF HMIPv6 has been extended, is presented where the multiple tunnels between E-MAP and mobile node are dynamically constructed. E-HMIPv6 is composed of the extension of IETF HMIPv6 MAP, handover procedure, and simultaneous multiple tunnels. In order to demonstrate superior to the proposed method, the NS-2 simulation has done for performance evaluation of TCP and UDP-based application comparison with the existing mobility management method.

Investigation of Open-Loop Transmit Power Control Parameters for Homogeneous and Heterogeneous Small-Cell Uplinks

  • Haider, Amir;Sinha, Rashmi Sharan;Hwang, Seung-Hoon
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • In Long Term Evolution (LTE) cellular networks, the transmit power control (TPC) mechanism consists of two parts: the open loop (OL) and closed loop. Most cellular networks consider OL/TPC because of its simple implementation and low operation cost. The analysis of OL/TPC parameters is essential for efficient resource management from the cellular operator's viewpoint. In this work, the impact of the OL/TPC parameters is investigated for homogeneous small cells and heterogeneous small-cell/macrocell network environments. A mathematical model is derived to compute the transmit power at the user equipment, the received power at the eNodeB, the interference in the network, and the received signal-to-interference ratio. Using the analytical platform, the effects of the OL/TPC parameters on the system performance in LTE networks are investigated. Numerical results show that, in order to achieve the best performance, it is appropriate to choose ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in a homogenous small-cell network. Further, the selections of ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in the small cells and ${\alpha}_{macro}=0.8$ and $P_{o-macro}=-100dBm$ in the macrocells seem to be suitable for heterogeneous network deployment.

Maximizing Network Utilization in IEEE 802.21 Assisted Vertical Handover over Wireless Heterogeneous Networks

  • Pandey, Dinesh;Kim, Beom Hun;Gang, Hui-Seon;Kwon, Goo-Rak;Pyun, Jae-Young
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.771-789
    • /
    • 2018
  • In heterogeneous wireless networks supporting multi-access services, selecting the best network from among the possible heterogeneous connections and providing seamless service during handover for a higher Quality of Services (QoSs) is a big challenge. Thus, we need an intelligent vertical handover (VHO) decision using suitable network parameters. In the conventional VHOs, various network parameters (i.e., signal strength, bandwidth, dropping probability, monetary cost of service, and power consumption) have been used to measure network status and select the preferred network. Because of various parameter features defined in each wireless/mobile network, the parameter conversion between different networks is required for a handover decision. Therefore, the handover process is highly complex and the selection of parameters is always an issue. In this paper, we present how to maximize network utilization as more than one target network exists during VHO. Also, we show how network parameters can be imbedded into IEEE 802.21-based signaling procedures to provide seamless connectivity during a handover. The network simulation showed that QoS-effective target network selection could be achieved by choosing the suitable parameters from Layers 1 and 2 in each candidate network.

A Flexible Network Access Scheme for M2M Communications in Heterogeneous Wireless Networks

  • Tian, Hui;Xie, Wei;Xu, Youyun;Xu, Kui;Han, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3789-3809
    • /
    • 2015
  • In this paper, we deal with the problem of M2M gateways' network selection for different types of M2M traffic in heterogeneous wireless networks. Based on the difference in traffic's quality of service (QoS) requirements, the M2M traffic produced by various applications is mainly classified as two categories: flexible traffic and rigid traffic. Then, game theory is adopted to solve the problem of network-channel selection with the coexistence of flexible and rigid traffic, named as flexible network access (FNA). We prove the formulated discrete game is a potential game. The existence and feasibility of the Nash equilibrium (NE) of the proposed game are also analyzed. Then, an iterative algorithm based on optimal reaction criterion and a distributed algorithm with limited feedback based on learning automata are presented to obtain the NE of the proposed game. In simulations, the proposed iterative algorithm can achieve a near optimal sum utility of whole network with low complexity compared to the exhaustive search. In addition, the simulation results show that our proposed algorithms outperform existing methods in terms of sum utility and load balance.

A QEE-Oriented Fair Power Allocation for Two-tier Heterogeneous Networks

  • Ji, Shiyu;Tang, Liangrui;He, Yanhua;Li, Shuxian;Du, Shimo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.1912-1931
    • /
    • 2018
  • In future wireless network, user experience and energy efficiency will play more and more important roles in the communication systems compared to their roles at present. Quality of experience (QoE) and Energy Efficiency (EE) become the widely used metrics. In this paper, we study a combinatorial problem of QoE and EE and investigate a fair power allocation in heterogeneous networks. We first design a new metric, QoE-aware EE (QEE) to reflect the relationship of QoE and energy. Then, the concept of Utopia QEE is introduced, which is defined as the achievable maximum QEE in ideal conditions, for each user. Finally, we transform the power allocation process to an optimization of ratio of QEE and Utopia QEE and use invasive weed optimization (IWO) algorithm to solve the optimization problem. Numerical simulation results indicate that the proposed algorithm can get converged and efficiently improve the system energy efficiency and the QoE for each user.

Analytical Study on Inter-Cell Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

  • Gu, Hangyu;Li, Shuangchun;Havyarimana, Vincent;Wang, Dong;Xiao, Zhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2029-2043
    • /
    • 2018
  • In this paper, we propose a novel inter-cell handover approach from a new perspective in dense Heterogeneous and Small Cell Networks (HetSNets). We first devise a cell selection mechanism to choose a proper candidate small cell for the UEs that tend to implement inter-small cell handover (ICH). By exploiting the property of a typical non-concentric circle, i.e., circle of Apollonius, we then propose a novel analytical method for modeling inter-cell handover regions and present mathematical derivation to prove that the inter-small cell handover issues fit the property of the circle of Apollonius. We design an inter-cell handover algorithm (ICHA) by means of our proposed handover model to dynamically configure hysteresis margin and properly implement handover decision in terms of UE's mobility. Simulation results demonstrate that the proposed ICHA yields lower call drop rate and radio link failure rate than the conventional methods and hence achieve high Handover Performance Indicator (HPI).

WPIF: The Integration Framework for the Convergence of Heterogeneous WPANs (WPIF: 이종 WPAN 연동을 위한 통합 프레임워크)

  • Kong In-Yeup;Je Dong-Guk;Sihn Gyung-Chul;Kim Dae-Sik;Hwang Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7B
    • /
    • pp.583-594
    • /
    • 2006
  • WPANs (Wireless personal area networks) have developed as various forms according to requirements such as data rate, coverage, subscriber volume, and supported mobile velocity. And mobile device with multiple network interfaces is very common. To make these multi-mode devices communicate with any WPAN device at anytime, anywhere, the framework for heterogeneous wireless networks is essential. Therefore, we propose the integration framework to converge heterogeneous WPANs. In this paper, we explain the requirements and detailed design of our framework, and then present the emulation test results.