• Title/Summary/Keyword: Heterogeneous Network Security

Search Result 104, Processing Time 0.03 seconds

Cybersecurity Threats and Countermeasures of the Smart Home Ecosystem

  • Darem, Abdulbasit;Alhashmi, Asma A.;Jemal, H.A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.303-311
    • /
    • 2022
  • The tremendous growth of the Internet of things is unbelievable. Many IoT devices have emerged on the market over the last decade. This has made our everyday life easier inside our homes. The technology used at home has changed significantly over the past several decades, leading to what is known today as the smart home. However, this growth has also brought new challenges to our home security and privacy. With the smart home becoming more mainstream, cybersecurity issues have become a fundamental concern. The smart home is an environment where heterogeneous devices and appliances are interconnected through the Internet of Things (IoT) to provide smart services to residents. These services include home climate control, energy management, video on demand, music on-demand, remote healthcare, remote control, and other similar services in a ubiquitous manner. Smart home devices can be controlled via the Internet using smartphones. However, connecting smart home appliances to wireless networks and the Internet makes individuals vulnerable to malicious attacks. Remote access within the same environment or over the Internet requires an effective access control mechanism. This paper intends to shed light on how smart home devices are working as well as the type of security and privacy threats of the smart home. It also illustrated the types of authentication methods that can be used with smart home devices. In addition, a comparison of Smart home IoT-based security protocols was presented along with a security countermeasure that can be used in a smart home environment. Finally, a few open problems were mentioned as future research directions for researchers.

BandBlock: Bandwidth allocation in blockchain-empowered UAV-based heterogeneous networks

  • Kuna Venkateswarararao;Pratik Kumar;Akash Solanki;Pravati Swain
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.945-954
    • /
    • 2022
  • The 5G mobile network is promising to handle the dynamic traffic demands of user equipment (UE). Unmanned aerial vehicles (UAVs) equipped with wireless transceivers can act as flying base stations in heterogeneous networks to ensure the quality of service of UE. However, it is challenging to efficiently allocate limited bandwidth to UE due to dynamic traffic demands and low network coverage. In this study, a blockchain-enabled bandwidth allocation framework is proposed for secure bandwidth trading. Furthermore, the proposed framework is based on the Cournot oligopoly game theoretical model to provide the optimal solution; that is, bandwidth is allocated to different UE based on the available bandwidth at UAV-assisted-based stations (UBSs) with optimal profit. The Cournot oligopoly game is performed between UBSs and cellular base stations (CBSs). Utility functions for both UBSs and CBSs are introduced on the basis of the available bandwidth, total demand of CSBs, and cost of providing cellular services. The proposed framework prevents security attacks and maximizes the utility functions of UBSs and CBSs.

CoMP Transmission for Safeguarding Dense Heterogeneous Networks with Imperfect CSI

  • XU, Yunjia;HUANG, Kaizhi;HU, Xin;ZOU, Yi;CHEN, Yajun;JIANG, Wenyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.110-132
    • /
    • 2019
  • To ensure reliable and secure communication in heterogeneous cellular network (HCN) with imperfect channel state information (CSI), we proposed a coordinated multipoint (CoMP) transmission scheme based on dual-threshold optimization, in which only base stations (BSs) with good channel conditions are selected for transmission. First, we present a candidate BSs formation policy to increase access efficiency, which provides a candidate region of serving BSs. Then, we design a CoMP networking strategy to select serving BSs from the set of candidate BSs, which degrades the influence of channel estimation errors and guarantees qualities of communication links. Finally, we analyze the performance of the proposed scheme, and present a dual-threshold optimization model to further support the performance. Numerical results are presented to verify our theoretical analysis, which draw a conclusion that the CoMP transmission scheme can ensure reliable and secure communication in dense HCNs with imperfect CSI.

A Novel Smart Contract based Optimized Cloud Selection Framework for Efficient Multi-Party Computation

  • Haotian Chen;Abir EL Azzaoui;Sekione Reward Jeremiah;Jong Hyuk Park
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.240-257
    • /
    • 2023
  • The industrial Internet of Things (IIoT) is characterized by intelligent connection, real-time data processing, collaborative monitoring, and automatic information processing. The heterogeneous IIoT devices require a high data rate, high reliability, high coverage, and low delay, thus posing a significant challenge to information security. High-performance edge and cloud servers are a good backup solution for IIoT devices with limited capabilities. However, privacy leakage and network attack cases may occur in heterogeneous IIoT environments. Cloud-based multi-party computing is a reliable privacy-protecting technology that encourages multiparty participation in joint computing without privacy disclosure. However, the default cloud selection method does not meet the heterogeneous IIoT requirements. The server can be dishonest, significantly increasing the probability of multi-party computation failure or inefficiency. This paper proposes a blockchain and smart contract-based optimized cloud node selection framework. Different participants choose the best server that meets their performance demands, considering the communication delay. Smart contracts provide a progressive request mechanism to increase participation. The simulation results show that our framework improves overall multi-party computing efficiency by up to 44.73%.

Autonomous, Scalable, and Resilient Overlay Infrastructure

  • Shami, Khaldoon;Magoni, Damien;Lorenz, Pascal
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.378-390
    • /
    • 2006
  • Many distributed applications build overlays on top of the Internet. Several unsolved issues at the network layer can explain this trend to implement network services such as multicast, mobility, and security at the application layer. On one hand, overlays creating basic topologies are usually limited in flexibility and scalability. On the other hand, overlays creating complex topologies require some form of application level addressing, routing, and naming mechanisms. Our aim is to design an efficient and robust addressing, routing, and naming infrastructure for these complex overlays. Our only assumption is that they are deployed over the Internet topology. Applications that use our middleware will be relieved from managing their own overlay topologies. Our infrastructure is based on the separation of the naming and the addressing planes and provides a convergence plane for the current heterogeneous Internet environment. To implement this property, we have designed a scalable distributed k-resilient name to address binding system. This paper describes the design of our overlay infrastructure and presents performance results concerning its routing scalability, its path inflation efficiency and its resilience to network dynamics.

UAV Communication System Development by Heterogeneous Mobile Communication System (이종의 이동통신 시스템을 이용한 무인항공기 탑재용 통신시스템 개발)

  • Ko, Kyung-Wan;Park, Pyung-Joo;Lee, Suk-Shin;Lee, Byung-Seub
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.490-502
    • /
    • 2009
  • This monograph details the development of communication UAV(Unmanned Aerial Vehicle) in combined modems of HSDPA with Wibro by using two kinds of mobile network. In order to apply mobile network which is currently serviced to a UAV, it is necessary to solve some problems : insurance of wide coverage based on the range of the UAV, electrical transmission of extensive image data for UAV for watching and scouting, security of stable communication environment is related to network traffic. This paper proposes those difficulties to be solved by application of correspondence system to mobile network. The proposed system consists of two parts; HSDPA part and Wibro part. The use of those can not only secure wide range of coverage but also transmit huge data. Furthermore, through utilizing them along with two kinds of mobile network, stable communication environment can be built up. All of these effects can be confirmed by experimentations and simulations.

  • PDF

Designing Reliable P2P Transmission Mechanism Against MITM Attack (MITM 공격에 안전한 P2P 신뢰전송 메커니즘의 설계)

  • Kim, Sang-Choon;Kwon, Hyeonk-Chan;Nah, Jae-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.103-109
    • /
    • 2008
  • Many Internet application provide the PKI(public key infrastructure)-based service to provide authentication and message integrity. Several researchers proposed PKI-based p2p network framework. However, in the real world, the use of PKI is not suitable for peer to peer network, because the peer-to-peer network is an open and dynamic network. Moreover, currently there is no nation-to-nation interoperable certificate. In this paper, we designed reliable p2p file sharing application without public key infrastructure. To do this we propose reliable public key distribution mechanism to distribute public key safely without PKI infrastructure for two-tier super-peer architecture. In our system, each peer generates and distributes its public/private key pairs, and the public key is securely distributed without PKI. The proposed mechanism is safe against MITM attack. This mechanism can be applied various P2P applications such as file sharing, IPTV, distributed resource sharing and so on

A Security Monitoring System for Security Information Sharing and Cooperative Countermeasure (협력대응기반 전역네트워크 보안정보공유 시스템)

  • Kim, Ki-Young;Lee, Sung-Won;Kim, Jong-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.60-69
    • /
    • 2013
  • Highlighted by recent security breaches including Google, Western Energy Company, and the Stuxnet infiltration of Iranian nuclear sites, Cyber warfare attacks pose a threat to national and global security. In particular, targeted attacks such as APT exploiting a high degree of stealthiness over a long period, has extended their victims from PCs and enterprise servers to government organizations and critical national infrastructure whereas the existing security measures exhibited limited capabilities in detecting and countermeasuring them. As a solution to fight against such attacks, we designed and implemented a security monitoring system, which shares security information and helps cooperative countermeasure. The proposed security monitoring system collects security event logs from heterogeneous security devices, analyses them, and visualizes the security status using 3D technology. The capability of the proposed system was evaluated and demonstrated throughly by deploying it under real network in a ISP for a week.

An AAA Mechanism using ID-based Ticket offer Anonymity (익명성을 지원하는 ID기반 티켓을 이용한 AAA 메커니즘)

  • Moon, Jong-Sik;Paek, Chang-Hyun;Lee, Im-Yeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.5
    • /
    • pp.87-98
    • /
    • 2007
  • AAA protocol is an information protection technology which systematically provides authentication, authorization and accounting function not only in the existing wire network but also in the rapidly developing wireless network, various services and protocol. Nowadays, standardization of the various application services is in progress with the purpose of AAA standardization fer the mobile user in the wireless network. And various researches are being conducted fur using AAA in the roaming service and mobile IPv6 network between heterogeneous networks. In this paper uses OTP and ID-based ticket for user authentication in the mobile device under the ubiquitous environment, and service is seamlessly provided even though the mobile device moves from the home network to the foreign network. In addition, with the ticket renewed from the foreign network, the overhead of the home authentication server can be reduced, and provides anonymity of service through the anonymity ID.

Study on Detection Technique of Privacy Distribution Route based on Interconnection of Security Documents and Transaction ID (보안문서와 트랜잭션ID 연계기반 개인정보유통경로 탐지기법 연구)

  • Shin, Jae-ho;Kim, In-seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1435-1447
    • /
    • 2015
  • Finance Companies are operating a security solution such as E-DRM(Enterprise-Digital Right Management), Personal information search, DLP(Data Loss Prevention), Security of printed paper, Internet network separation system, Privacy monitoring system for privacy leakage prevention by insiders. However, privacy leakages are occurring continuously and it is difficult to the association analysis about relating to the company's internal and external distribution of private document. Because log system operated in the separate and independent security solutions. This paper propose a systematic chains that can correlatively analyze business systems and log among heterogeneous security solutions organically and consistently based on security documents. Also, we suggest methods of efficient detection for Life-Cycle management plan about security documents that are created in the personal computer or by individual through the business system and distribution channel tracking about security documents contained privacy.