• Title/Summary/Keyword: HetNet

Search Result 47, Processing Time 0.024 seconds

Mobile Small Cells for Further Enhanced 5G Heterogeneous Networks

  • Lee, Choong-Hee;Lee, Sung-Hyung;Go, Kwang-Chun;Oh, Sung-Min;Shin, Jae Sheung;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.856-866
    • /
    • 2015
  • A heterogeneous network (HetNet) is a network topology composed by deploying multiple HetNets under the coverage of macro cells (MCs). It can improve network throughput, extend cell coverage, and offload network traffic; for example, the network traffic of a 5G mobile communications network. A HetNet involves a mix of radio technologies and various cell types working together seamlessly. In a HetNet, coordination between MCs and small cells (SCs) has a positive impact on the performance of the networks contained within, and consequently on the overall user experience. Therefore, to improve user-perceived service quality, HetNets require high-efficiency network protocols and enhanced radio technologies. In this paper, we introduce a 5G HetNet comprised of MCs and both fixed and mobile SCs (mSCs). The featured mSCs can be mounted on a car, bus, or train and have different characteristics to fixed SCs (fSCs). In this paper, we address the technical challenges related to mSCs. In addition, we analyze the network performance under two HetNet scenarios-MCs and fSCs, and MCs and mSCs.

Quasi-distributed Interference Coordination for HSPA HetNet

  • Zhang, Chi;Chang, Yongyu;Qin, Shuqi;Yang, Dacheng
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.31-41
    • /
    • 2014
  • The heterogeneous network (HetNet) has been discussed in detail in the Long-Term Evolution (LTE) and LTE Advanced standards. However, the standardization of High-Speed Packet Access HetNet (HSPA HetNet) launched by 3GPP is pushing at full steam. Interference coordination (IC), which is responsible for dealing with the interference in the system, remains a subject worthy of investigation in regard to HSPA HetNet. In this paper, considering the network framework of HSPA HetNet, we propose a quasi-distributed IC (QDIC) scheme to lower the interference level in the co-channel HSPA HetNet. Our QDIC scheme is constructed as slightly different energy-efficient non-cooperative games in the downlink (DL) and uplink (UL) scenarios, respectively. The existence and uniqueness of the equilibrium for these games are first revealed. Then, we derive the closed-form best responses of these games. A feasible implementation is finally developed to achieve our QDIC scheme in the practical DL and UL. Simulation results show the notable benefits of our scheme, which can indeed control the interference level and enhance the system performance.

A Survey of Energy Efficiency Optimization in Heterogeneous Cellular Networks

  • Abdulkafi, Ayad A.;Kiong, Tiong S.;Sileh, Ibrahim K.;Chieng, David;Ghaleb, Abdulaziz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.462-483
    • /
    • 2016
  • The research on optimization of cellular network's energy efficiency (EE) towards environmental and economic sustainability has attracted increasing attention recently. In this survey, we discuss the opportunities, trends and challenges of this challenging topic. Two major contributions are presented namely 1) survey of proposed energy efficiency metrics; 2) survey of proposed energy efficient solutions. We provide a broad overview of the state of-the-art energy efficient methods covering base station (BS) hardware design, network planning and deployment, and network management and operation stages. In order to further understand how EE is assessed and improved through the heterogeneous network (HetNet), BS's energy-awareness and several typical HetNet deployment scenarios such as macrocell-microcell and macrocell-picocell are presented. The analysis of different HetNet deployment scenarios gives insights towards a successful deployment of energy efficient cellular networks.

HetNet Characteristics and Models in 5G Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2022
  • The fifth generation (5G) mobile communication technology is designed to meet all communication needs. Heterogeneous networks (HetNets) are a new emerging network structure. HetNets have greater potential for radio resource reuse and better service quality than homogeneous networks since they can evolve small cells into macrocells. Effective resource allocation techniques reduce inter-user interference while optimizing the utilization of limited spectrum resources in HetNets. This article discusses resource allocation in 5G HetNets. This paper explains HetNets and how they work. Typical cell types in HetNets are summarized. Also, HetNets models are explained in the third section. The fourth component addresses radio resource control and mobility management. Moreover, future study in this subject may benefit from this article's significant insights on how HetNets function.

Hybrid-clustering game Algorithm for Resource Allocation in Macro-Femto HetNet

  • Ye, Fang;Dai, Jing;Li, Yibing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1638-1654
    • /
    • 2018
  • The heterogeneous network (HetNet) has been one of the key technologies in Long Term Evolution-Advanced (LTE-A) with growing capacity and coverage demands. However, the introduction of femtocells has brought serious co-layer interference and cross-layer interference, which has been a major factor affecting system throughput. It is generally acknowledged that the resource allocation has significant impact on suppressing interference and improving the system performance. In this paper, we propose a hybrid-clustering algorithm based on the $Mat{\acute{e}}rn$ hard-core process (MHP) to restrain two kinds of co-channel interference in the HetNet. As the impracticality of the hexagonal grid model and the homogeneous Poisson point process model whose points distribute completely randomly to establish the system model. The HetNet model based on the MHP is adopted to satisfy the negative correlation distribution of base stations in this paper. Base on the system model, the spectrum sharing problem with restricted spectrum resources is further analyzed. On the basis of location information and the interference relation of base stations, a hybrid clustering method, which takes into accounts the fairness of two types of base stations is firstly proposed. Then, auction mechanism is discussed to achieve the spectrum sharing inside each cluster, avoiding the spectrum resource waste. Through combining the clustering theory and auction mechanism, the proposed novel algorithm can be applied to restrain the cross-layer interference and co-layer interference of HetNet, which has a high density of base stations. Simulation results show that spectral efficiency and system throughput increase to a certain degree.

Interference Management with Cell Selection using Cell Range Expansion and ABS in Heterogeneous Network based on LTE-Advanced (LTE-Advanced 기반 이종 네트워크에서 셀 영역 확장에 대한 셀 선택과 ABS를 통한 간섭 관리 기법)

  • Moon, Sangmi;Kim, Bora;Malik, Saransh;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.39-44
    • /
    • 2013
  • Long Term Evolution (LTE) - Advanced has developed Heterogeneous Network (HetNet) that consists of a mix of macrocells and low-power nodes such as picocells to improve the system performance. Also, to encourage data offloading in HetNet, Cell Range Expansion (CRE) have been introduced. In this paper, we propose a cell selection scheme based on Signal to Interference plus Noise Ratio (SINR) for optimal offloading effect. And we manage the interference for user located in cell range expanded region using Almost Blank Subframe (ABS) with flexible ABS ratio to improve the spectrum efficiency in time domain. Simulation results show that proposed scheme can improve spectrum efficiency of macrocell and picocell user. Eventually, proposed scheme can imporve overall user performance.

Cluster Coordinator Node Based Inter-Cell Interference Management Methods in Heterogeneous Networks (이기종 네트워크에서 클러스터 코디네이터 노드 기반의 셀간 간섭 관리 방법)

  • Yang, Mochan;Wu, Shanai;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.277-288
    • /
    • 2013
  • 3GPP LTE-Advanced (Third Generation Partnership Project Long Term Evolution-Advanced) as a next generation mobile communication standard introduced small base stations such as femto cells or pico cells, and D2D (Device-to-Device) communications between mobiles in the proximity in order to satisfy the needs of rapidly growing wireless data traffic. A diverse range of topics has been studied to solve various interference situations which may occur within a single cell. In particular, an introduction of a small base station along with D2D communication raises important issues of how to increase the channel capacity and frequency efficiency in HetNets (Heterogeneous Networks). To this end, we propose in this paper methods to manage the interference between the macro cell and other small cells in the HetNet to improve the frequency efficiency. The proposed CCN (Cluster Coordinator Node)-assisted ICI (Inter-Cell Interference) avoidance methods exploit the CCN to control the interference in HetNet comprising of an MeNB (Macro enhanced Node-B) and a large number of small cells. A CCN which is located at the center of a number of small cells serves to avoid the interference between macro cell and small cells. We propose methods of resource allocation to avoid ICI for user equipments within the CCN coverage, and evaluate their performance through system-level computer simulations.

Key Challenges of Mobility Management and Handover Process In 5G HetNets

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.139-146
    • /
    • 2022
  • Wireless access technologies are emerging to enable high data rates for mobile users and novel applications that encompass both human and machine-type interactions. An essential approach to meet the rising demands on network capacity and offer high coverage for wireless users on upcoming fifth generation (5G) networks is heterogeneous networks (HetNets), which are generated by combining the installation of macro cells with a large number of densely distributed small cells Deployment in 5G architecture has several issues because to the rising complexity of network topology in 5G HetNets with many distinct base station types. Aside from the numerous benefits that dense small cell deployment delivers, it also introduces key mobility management issues such as frequent handover (HO), failures, delays and pingpong HO. This article investigates 5G HetNet mobility management in terms of radio resource control. This article also discusses the key challenges for 5G mobility management.

A Low-Complexity Algorithm for Inter-Cell Interference Coordination and User Scheduling in Downlink Heterogeneous Networks (이종 네트워크 하향링크의 셀간 간섭 조정 및 사용자 스케줄링을 위한 저복잡도 알고리즘)

  • Park, Jinhyun;Lee, Jae Hong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.9-17
    • /
    • 2014
  • Heterogeneous network (HetNet) is a network consisting of macrocells overlaid with small cells. In HetNet, the interference from macrocell to small cell users is a major cause of performance degradation of small cell users and enhanced inter-cell interference coordination (eICIC) is needed to mitigate the interference. Previous works on eICIC gives limited performance gain because these works focus on maximizing long-term throughput and rarely consider varying channel conditions over frames. This paper proposes a new algorithm which dynamically coordinates interference and schedules users on each frame to maximize the total utility of the network with lower computational complexity than exhaustive search. Simulation results show that the proposed algorithm achieves higher total throughput than the throughput with the conventional algorithm, and has higher fairness index than the conventional algorithm when there large number of users.

Radio Resource Management of CoMP System in HetNet under Power and Backhaul Constraints

  • Yu, Jia;Wu, Shaohua;Lin, Xiaodong;Zhang, Qinyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3876-3895
    • /
    • 2014
  • Recently, Heterogeneous Network (HetNet) with Coordinated Multi-Point (CoMP) scheme is introduced into Long Term Evolution-Advanced (LTE-A) systems to improve digital services for User Equipments (UEs), especially for cell-edge UEs. However, Radio Resource Management (RRM), including Resource Block (RB) scheduling and Power Allocation (PA), in this scenario becomes challenging, due to the intercell cooperation. In this paper, we investigate the RRM problem for downlink transmission of HetNet system with Joint Processing (JP) CoMP (both joint transmission and dynamic cell selection schemes), aiming at maximizing weighted sum data rate under the constraints of both transmission power and backhaul capacity. First, joint RB scheduling and PA problem is formulated as a constrained Mixed Integer Programming (MIP) which is NP-hard. To simplify the formulation problem, we decompose it into two problems of RB scheduling and PA. For RB scheduling, we propose an algorithm with less computational complexity to achieve a suboptimal solution. Then, according to the obtained scheduling results, we present an iterative Karush-Kuhn-Tucker (KKT) method to solve the PA problem. Extensive simulations are conducted to verify the effectiveness and efficiency of the proposed algorithms. Two kinds of JP CoMP schemes are compared with a non-CoMP greedy scheme (max capacity scheme). Simulation results prove that the CoMP schemes with the proposed RRM algorithms dramatically enhance data rate of cell-edge UEs, thereby improving UEs' fairness of data rate. Also, it is shown that the proposed PA algorithms can decrease power consumption of transmission antennas without loss of transmission performance.