• Title/Summary/Keyword: Hepatocellular carcinoma cells

Search Result 311, Processing Time 0.025 seconds

Anti-growth Effects of Imatinib and GNF5 via Regulation of Skp2 in Human Hepatocellular Carcinoma Cells

  • Kim, Sung Hyun;Kim, Myoung-Ok;Kim, Ki-Rim
    • Journal of Cancer Prevention
    • /
    • v.23 no.4
    • /
    • pp.170-175
    • /
    • 2018
  • Background: Human hepatocellular carcinoma (HCC) is a common liver tumor and the main cause of cancer-related death. Tyrosine kinase inhibitors, such as imatinib and GNF5 which were developed to treat chronic myelogenous leukemia, regulate the progression of various cancers. The aim of this study was to confirm the anti-tumor activity of tyrosine kinase inhibitors through regulation of S-phase kinase-associated protein 2 (Skp2), an important oncogenic factor in various cancer cells, in human hepatocarcinoma SK-HEP1 cells. Methods: Cell viability and colony formation assays were conducted to evaluate the effects of imatinib, GNF5 and GNF2 on the growth of SK-HEP1 cells. Using immunoblot analysis, we assessed change of the activation of caspases, PARP, Akt, mitogen-activated protein kinases, and Skp2/p27/p21 pathway by imatinib and GNF5 in SK-HEP1 cells. Using sh-Skp2 HCC cells, the role of Skp2 in the effects of imatinib and GNF5 was evaluated. Results: Imatinib and GNF5 significantly inhibited the growth of SK-HEP1 cells. Treatment of imatinib and GNF5 decreased Skp2 expression and Akt phosphorylation, and increased the expression of p27, p21, and active-caspases in SK-HEP1 cells. In sh-Skp2 HCC cells, cell growth and the expression of Skp2 were inhibited by more than in the mock group treated with imatinib and GNF5. Conclusions: These results suggest that the anti-growth activity of tyrosine kinase inhibitors may be associated with the regulation of p27/p21 and caspases through Skp2 blockage in HCC cells.

Sox12 Is a Cancer Stem-Like Cell Marker in Hepatocellular Carcinoma

  • Zou, Song;Wang, Chen;Liu, Jiansheng;Wang, Qun;Zhang, Dongdong;Zhu, Shengnan;Xu, Shengyuan;Kang, Mafei;He, Shaozhong
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.847-854
    • /
    • 2017
  • Recent studies on molecular carcinogenesis suggest that the chemo-resistance of some cancers is largely due to presence of cancer stem cells (CSCs), which affect the chemotherapy outcome for hepatocellular carcinoma (HCC). However, currently no consensus on a CSC phenotype in HCC has been obtained. Here, we examined Sox12 as a novel CSC marker in HCC. Sox12+ versus Sox12- cells were purified from HCC cell lines. The Sox12+ cells were compared with Sox12- HCC cells for tumor sphere formation, chemo-resistance, tumor formation after serial adoptive transplantations in nude mice, and the frequency of developing distal metastasis. We found that compared to Sox12- HCC cells, Sox12+ HCC cells generated significantly more tumor spheres in culture, were more chemo-resistant to cisplatin, were detected in circulation more frequently, and formed distal tumor more frequently. Moreover, Sox12 appeared to functionally contribute to the stemness of HCC cells. Thus, we conclude that Sox12 may be a novel marker for enriching CSCs in HCC.

Evaluation of Cytotoxicity Effects of Chalcone Epoxide Analogues as a Selective COX-II Inhibitor in the Human Liver Carcinoma Cell Line

  • Makhdoumi, Pouran;Zarghi, Afshin;Daraei, Bahram;Karimi, Gholamreza
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.207-212
    • /
    • 2017
  • Objectives: Study of the mechanisms involved in cancer progression suggests that cyclooxygenase enzymes play an important role in the induction of inflammation, tumor formation, and metastasis of cancer cells. Thus, cyclooxygenase enzymes could be considered for cancer chemotherapy. Among these enzymes, cyclooxygenase 2 (COX-2) is associated with liver carcinogenesis. Various COX-2 inhibitors cause growth inhibition of human hepatocellular carcinoma cells, but many of them act in the COX-2 independent mechanism. Thus, the introduction of selective COX-2 inhibitors is necessary to achieve a clear result. The present study was aimed to determine the growth-inhibitory effects of new analogues of chalcone epoxide as selective COX-2 inhibitors on the human hepatocellular carcinoma (HepG2) cell line. Methods: Estimation of both cell growth and the amount of prostaglandin E2 (PGE2) production were used to study the effect of selective COX-2 inhibitors on the hepatocellular carcinoma cell. Cell growth determination has done by MTT assay in 24 h, 48 h and 72 h, and PGE2 production has estimated by using ELYSA kit in 48 h and 72 h. Results: The results showed growth inhibition of the HepG2 cell line in a concentration and time-dependent manner, as well as a reduction in the formation of PGE2 as a product of COX-2 activity. Among the compounds those analogues with methoxy and hydrogen group showed more inhibitory effect than others. Conclusion: The current in-vitro study indicates that the observed significant growth-inhibitory effect of chalcone-epoxide analogues on the HepG2 cell line may involve COX-dependent mechanisms and the PGE2 pathway parallel to the effect of celecoxib. It can be said that these analogues might be efficient compounds in chemotherapy of COX-2 dependent carcinoma specially preventing and treatment of hepatocellular carcinomas.

Clinical Observation of Multiple Metastatic Cancer Patient with Hepatocellular Carcinoma treated with Cultivated Wild Ginseng Herbal Acupuncture Therapy

  • Kwon, Ki-Rok;Park, Chi-Wan;Ra, Min-Soo;Cho, Chong-Kwan
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.211-217
    • /
    • 2005
  • Objectives : Terminal stage cancer patient from primary hepatocellular carcinoma metastasized into lungs was administered with cultivated wild ginseng herbal acupuncture for 5 months and observed progression. Methods : Cultivated wild ginseng herbal acupuncture was administered 5 times a week at about 150cc dosage per week. Dynamic CT was taken and interpreted at a university hospital. Results : Above patient was diagnosed with hepatocellular carcinoma and received one procedure of lobectomy and three procedures of TACE, but because of metastasis, chance of improvement was very obscure. Intensive treatment of cultivated wild ginseng herbal acupuncture five times a week for five months in association with moxibustion was done on the patient. Near elimination of the cancer cells metastasized into lungs were confirmed in terms of radiological impression through dynamic CT. Conclusion: From the results obtained in this study, cultivated wild ginseng herbal acupuncture can be an effective measure against terminal stage cancer. But this is a single case study and lack of extensive follow-up must be compensated by further researches.

  • PDF

Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells

  • Guan, Feng;Ding, Youming;He, Yikang;Li, Lu;Yang, Xinyu;Wang, Changhua;Hu, Mingbai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.457-468
    • /
    • 2022
  • It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.

C4orf47 is a Novel Prognostic Biomarker and Correlates with Infiltrating Immune Cells in Hepatocellular Carcinoma

  • Hye-Ran Kim;Choong Won Seo;Sang Jun Han;Jongwan Kim
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.11-25
    • /
    • 2023
  • In hepatocellular carcinoma (HCC), chromosome 4 open-reading frame 47 (C4orf47) has not been so far investigated for its prognostic value or association with infiltrating immune cells. We performed bioinformatics analysis on HCC data and analyzed the data using online databases such as TIMER, UALCAN, Kaplan-Meier plotter, LinkedOmics, and GEPIA2. We found that C4orf47 expression in HCC was higher compared to normal tissues. High C4orf47 expression was associated with a worse prognosis in HCC. The correlation between C4orf47 and infiltrating immune cells is positively associated with CD4+T cells, B cells, neutrophils, macrophages, and dendritic cells in HCC. Moreover, high C4orf47 expression was correlated with a poor prognosis of infiltrating immune cells. Analysis of C4orf47 gene co-expression networks revealed that 12501 genes were positively correlated with C4orf47, whereas 7200 genes were negatively correlated. The positively related genes of C4orf47 are associated with a high hazard ratio in different types of cancer, including HCC. Regarding the biological functions of C4orf47 gene, it mainly regulates RNA metabolic process, DNA replication, and cell cycle. The C4orf47 gene may play a prognostic role by regulating the global transcriptome process in HCC. Our findings demonstrate that high C4orf47 expression correlates with poor prognosis and tumor-infiltrating immune cells in HCC. We suggest that C4orf47 is a novel prognostic biomarker and potential immune therapeutic target for HCC.

Characterization and Resistance Mechanisms of A 5-fluorouracil-resistant Hepatocellular Carcinoma Cell Line

  • Gu, Wei;Fang, Fan-Fu;Li, Bai;Cheng, Bin-Bin;Ling, Chang-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4807-4814
    • /
    • 2012
  • Purpose: The chemoresistance of human hepatocellular carcinoma (HCC) to cytotoxic drugs, especially intrinsic or acquired multidrug resistance (MDR), still remains a major challenge in the management of HCC. In the present study, possible mechanisms involved in MDR of HCC were identified using a 5-fluorouracil (5-FU)-resistant human HCC cell line. Methods: BEL-7402/5-FU cells were established through continuous culturing parental BEL-7402 cells, imitating the pattern of chemotherapy clinically. Growth curves and chemosensitivity to cytotoxic drugs were determined by MTT assay. Doubling times, colony formation and adherence rates were calculated after cell counting. Morphological alteration, karyotype morphology, and untrastructure were assessed under optical and electron microscopes. The distribution in the cell cycle and drug efflux pump activity were measured by flow cytometry. Furthermore, expression of potential genes involved in MDR of BEL-7402/5-FU cells were detected by immunocytochemistry. Results: Compared to its parental cells, BEL-7402/5-FU cells had a prolonged doubling time, a lower mitotic index, colony efficiency and adhesive ability, and a decreased drug efflux pump activity. The resistant cells tended to grow in clusters and apparent changes of ultrastructures occurred. BEL-7402/5-FU cells presented with an increased proportion in S and G2/M phases with a concomitant decrease in G0/G1 phase. The MDR phenotype of BEL-7402/5-FU might be partly attributed to increased drug efflux pump activity via multidrug resistance protein 1 (MRP1), overexpression of thymidylate synthase (TS), resistance to apoptosis by augmentation of the Bcl-xl/Bax ratio, and intracellular adhesion medicated by E-cadherin (E-cad). P-glycoprotein (P-gp) might play a limited role in the MDR of BEL-7402/5-FU. Conclusion: Increased activity or expression of MRP1, Bcl-xl, TS, and E-cad appear to be involved in the MDR mechanism of BEL-7402/5-FU.

The Role of Autophagy on the Induction of Apoptosis by Water Extracts of Bigihwan, Daechilgitang and Mokwhyangbinranghwan in HepG2 Human Hepatocellular Carcinoma Cells (비기환, 대칠기탕 및 목향빈랑환 열수 추출물에 의한 인간 간세포암종 HepG2 세포의 세포사멸 유도에 미치는 자가포식의 역할)

  • Park, Sang Eun;Hong, Su Hyun;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.30 no.2
    • /
    • pp.67-83
    • /
    • 2022
  • Objectives : In this study, the anticancer activity of water extracts of three herbal medicine formulas, Bigihwan (BGH), Daechilgitang (DCGT) and Mokwhyangbinranghwan (MHBRH) listed in Donguibogam, was evaluated in HepG2 cells, a human hepatocellular carcinoma cell line. Methods : We investigated whether the cell viability of HepG2 cells was inhibited by the treatment of water extracts of three prescriptions, and whether their viability inhibitory effect was related to the induction of apoptosis. In addition, the role of autophagy on the induction of apoptosis by the treatment of these extracts was investigated. Results : The anticancer activity of the three water extracts on HepG2 cells was due to induction of apoptosis, not necrosis. Among them, BGH activated the caspase-dependent intrinsic apoptosis pathway associated with mitochondrial dysfunction. However, autophagy was induced more than 2-fold in DCGT-treated HepG2 cells, and the anticancer activity of DCGT was enhanced 1.5-fold in the presence of an autophagy inhibitor, but was attenuated in BGH and MHBRH-treated cells. Conclusion : The results of this study indicate that DCGT-induced autophagy was involved in the inhibition of apoptosis, whereas autophagy by BGH and MHBRH was related to induction of apoptosis.

Inhibition of Hepatocellular Carcinoma Cell Growth by the Extract of Symphytum offcinale L. and the Possible Mechanisms for this Inhibition

  • Ham, Seung-Shi;Park, Kyong-Gun;Lee, Yong-Moon;Lee, Young-Ik;Yoon, Ji-Won;Kim, Seong-Jin;Lee, euk-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.236-240
    • /
    • 1997
  • A crude extract of Smphytum officinale L. (comfrey) was for its ability to inhibit he growth of hepatocellular carcinoma cells and expression of the insulin-like growth factor I (IGF-II) gene. The DNA synthesis of hepatocellular carcinoma cell lines, Hep G2, Hep 3B, and PLC/PRF/5 was inhibited by a crude extract of Smphytum officinale in both a time- and a dose-dependent manners. This plant extract also inhibited expression of the IGF-II gene. Since IGF-II exerts a mitogenic effect on Hep G2 cells, these results suggest that the growth inhibition by Symphytum officinale extract is, in part, mediated through the inhibition of IGF-II gene expression.

  • PDF

Current Status and Future Direction of Immunotherapy in Hepatocellular Carcinoma: What Do the Data Suggest?

  • Hye Won Lee;Kyung Joo Cho;Jun Yong Park
    • IMMUNE NETWORK
    • /
    • v.20 no.1
    • /
    • pp.11.1-11.14
    • /
    • 2020
  • Most patients with hepatocellular carcinoma (HCC) are diagnosed at an advanced stage of disease. Until recently, systemic treatment options that showed survival benefits in HCC have been limited to tyrosine kinase inhibitors, antibodies targeting oncogenic signaling pathways or VEGF receptors. The HCC tumor microenvironment is characterized by a dysfunction of the immune system through multiple mechanisms, including accumulation of various immunosuppressive factors, recruitment of regulatory T cells and myeloid-derived suppressor cells, and induction of T cell exhaustion accompanied with the interaction between immune checkpoint ligands and receptors. Immune checkpoint inhibitors (ICIs) have been interfered this interaction and have altered therapeutic landscape of multiple cancer types including HCC. In this review, we discuss the use of anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies in the treatment of advanced HCC. However, ICIs as a single agent do not benefit a significant portion of patients. Therefore, various clinical trials are exploring possible synergistic effects of combinations of different ICIs (anti-PD-1/PD-L1 and anti-CTLA-4 antibodies) or ICIs and target agents. Combinations of ICIs with locoregional therapies may also improve therapeutic responses.