• 제목/요약/키워드: Hepatocarcinoma

검색결과 80건 처리시간 0.032초

계지복령환의 효능에 대한 국내외 실험연구 동향 분석 (The Analysis of the Experimental Research Trend of Efficacy of Gyejibokryeong-hwan)

  • 장새별;백선은;최경희;유정은
    • 대한한방부인과학회지
    • /
    • 제29권2호
    • /
    • pp.99-112
    • /
    • 2016
  • Objectives: Gyejibokryeong-hwan (GBH), a traditional Korean herbal medicine, has been widely used for the treatment of the blood stasis syndrome. This study is purposed to analyze the experimental research trend of GBH in Korea for developing further research plan. Methods: A search of Korean research database-Oasis, RISS and KISS- and Pubmed was carried out for publications until 2015, for the words, 'Guizhifulingwan', ‘Gyejibokryeonghwan’, or ‘Keishibukuryogan’. Then study selection is conducted according to PRISMA guidelines, studies not related or using modified formula or administered for human are excluded, 48 studies are included in this review, finally. We analyzed studies by research method, subject, outcome measure, and result of the study. Results: There were 31 in vivo studies about the effect of GBH on platelet aggregation, anti-oxidant, blood viscosity, and hypercholesterolemia, etc. 12 in vitro studies were about the effect of GBH on the cervical carcinoma, chronic kidney disease, uterine myoma, hepatocarcinoma, atherosclerosis, cancer chemo-prevent. 9 ex vivo studies were about the effect of GBH on the platelet aggregation, chronic kidney disease, ovaulatory disorder, and rheumarthritis.Conclusions: We proposed the translational research of GBH involving scientific discoveries and developing practical applications by investigating the concept of blood stasis syndrome in terms of current physiopathological mechanism.

계지복령환(桂枝茯苓丸)의 배오(配伍)분석과 그 생리활성 (Analysis for Compatibility of Gyejibongnyeong-hwan and Its Biological Activities)

  • 김도회;정양삼;윤미정;윤유식;신순식
    • 대한한의학방제학회지
    • /
    • 제24권4호
    • /
    • pp.353-365
    • /
    • 2016
  • Objectives : We analysed Gyejibongnyeong-hwan's compatibility principle and investigated biological activities by categorizing with molecular level, cellular level, animal level and human level based on Korean study for this formula. Methods : Gyejibongnyeong-hwan's compatibiltity principle was examined by the system of chief, deputy, assistant, and envoy. We looked into studies that presented in Korea from 1956 to 2016 about Gyejibongnyeong-hwan through Korea Institute of Oriental Medicine, Korean medicine information system (OASIS). Then classify into molecular level, cellular level, animal level and human level to analyse. Results : According to the system of chief, deputy, assistant, and envoy, chief herb is Cinnamomi Ramulus, deputy herb is Persicae Semen, assistant herb is Moutan Cortex, Paeoniae Radix, Poria, and envoy herb is Mel. Biological activities can be detected in transcription factors, enzymes, and inflammatory mediators for molecular level. For cellular level, it can be determined in human uterine endometrial cancer cell, human hepatocarcinoma cell, and human platelets. In mouse and rats for animal level, in overian cystoma, menorrhalgia, quality of life improvement in postmenopausal women, and blood stasis with motor vehicle accident for human level, biological activities was caught. Conclusions : From above results, Gyejibongnyeong-hwan is composed in line with the system of chief, deputy, assistan, and envoy. Biological activities are effective to improvement of menorrhalgia, anti-cancer, anti-oxidative, anti-inflammation, improvement of atherosclerosis, analgesic, anti-convulsion, wound healing, and improvement of liver function.

온청음(溫淸飮)의 조성 용량변화가 Hep3B 세포의 G1 arrest 기전에 미치는 영향 (Change of Ratio of Onchungeum Composition Induces Different G1 Arrest Mechanisms in Hep3B Cells)

  • 구인모;김길훤;신흥묵
    • 동의생리병리학회지
    • /
    • 제22권5호
    • /
    • pp.1250-1255
    • /
    • 2008
  • Onchungeum(OCE), a herbal formula, has been used for treatment of anemia, discharging blood and skin diseases. In the previous study, we investigated the anti-cancer effect of OCE by G1 arrest of the cell cycle in human hepatocarcinoma cells, Hep3B cells. In this study, it was examined that the difference of anti-proliferative mechanisms by change in the ratio of OCE composition (OCE I) in Hep3B cells. Treatment of OCE I exhibited a relatively strong anti-proliferative activity and caused various morphological changes such as membrane shrinkage and cell floating. In addition, OCE-I arrests the cell cycle at G1 phase, which was associated with the down-regulation of cyclin D1 and Cdk6 expressions. The G1 arrest was also associated with the induction of Cdk inhibitors p27 and p21. Moreover, both p21 and p27 were detected by immunoprecipitation with anti-Cdk4 and anti-Cdk2 antibodies in OCE I-treated cells but in case of OCE, p21 did not make any complexes with Cdk4 and Cdk2. These results suggest that the change in the ratio of OCE composition might induce different mechanisms in anti-cancer efficacy of OCE, which may confer characteristic principles in oriental medical formula.

Inhibition of TNF-α-mediated NF-κB Transcriptional Activity in HepG2 Cells by Dammarane-type Saponins from Panax ginseng Leaves

  • Song, Seok-Bean;Tung, Nguyen Huu;Quang, Tran Hong;Ngan, Nguyen Thi Thanh;Kim, Kyoon-Eon;Kim, Young-Ho
    • Journal of Ginseng Research
    • /
    • 제36권2호
    • /
    • pp.146-152
    • /
    • 2012
  • Panax ginseng (PG) is a globally utilized medicinal herb. The medicinal effects of PG are primarily attributable to ginsenosides located in the root and leaf. The leaves of PG are known to be rich in various bioactive ginsenosides, and the therapeutic effects of ginseng extract and ginsenosides have been associated with immunomodulatory and anti-inflammatory activities. We examined the effect of PG leaf extract and the isolated ginsenosides, on nuclear factor (NF)-${\kappa}B$transcriptional activity and target gene expression by applying a luciferase assay and reverse transcription polymerase chain reaction in tumor necrosis factor (TNF)-${\alpha}$-treated hepatocarcinoma HepG2 cells. Air-dried PG leaf extract inhibited TNF-${\alpha}$-induced NF-${\kappa}B$transcription activity and NF-${\kappa}B$-dependent cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) gene expression more efficiently than the steamed extract. Of the 10 ginsenosides isolated from PG leaves, Rd and Km most significantly inhibited activity in a dose-dependent manner, with $IC_{50}$ values of $12.05{\pm}0.82$ and $8.84{\pm}0.99\;{\mu}M$, respectively. Furthermore, the ginsenosides Rd and Km inhibited the TNF-${\alpha}$-induced expression levels of the COX-2 and iNOS gene in HepG2 cells. Air-dried leaf extracts and their chemical components, ginsenoside Rd and Km, are involved in the suppression of TNF-${\alpha}$-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-dependent iNOS and COX-2 gene expression. Consequently, air-dried leaf extract from PG, and the purified ginsenosides, have therapeutic potential as anti-inflammatory.

간암 세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 성장 억제 효과 (Anti-Growth Effect of Kaempferol, a Major Component of Polygonati Rhizoma, in Hepatocarcinoma Cells)

  • 주예진;정지천
    • 동의생리병리학회지
    • /
    • 제26권4호
    • /
    • pp.519-526
    • /
    • 2012
  • Recently, herbal flavonoids have been implicated for anti-cancer therapy. Flavonoids as a commonly known for their anti-oxidant activity, are contained in the herbal medicine as well as root of plants, vegetables, fruits, grains, tea, and wine. Kaempferol, a component of Polygonati rhizoma, a member of the herbal flavonoids, has been studied for anti-hypercholesterol, anti-hypertension and anti-diabetes. It is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. Here, we investigated the molecular mechanism underlying kaempferol-induced anti-cancer effects using the human liver cancer cell lines, Hep3B, HepG2, and Sk-Hep-1, and human Chang liver cell as a control. As shown by the FACS analysis, measurement of caspase activity, DAPI and trypan blue staining, and DNA fragmentation assay, kaempferol induced apoptosis in the liver cancer cells with the greater potential in Hep3B cells than other liver cancer cells. In addition, we performed microarray analysis to profile the genome-wide mRNA expression regulated by kaempferol. Many of the apoptosis-related genes were significantly induced in kaempferol-treated Hep3B cells, in particular, the genes associated with MAPK cascade. Additionally, kaempferol induced the mRNA expression of genes involved in MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathway, which are all known to trigger apoptosis. Overall, our data suggest that kaempferol has anti-liver cancer effects by inducing apoptosis through the MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathways.

현호색(玄胡索)이 인체간암세포 증식억제 및 apoptosis 유발에 미치는 영향 (Antiproliferative Effect and Apoptotic Mechanism of Extract of Corydalis Yanhusuo on Human Hepatocarcinoma Cells)

  • 오명택;엄현섭;지규용
    • 동의생리병리학회지
    • /
    • 제21권6호
    • /
    • pp.1437-1449
    • /
    • 2007
  • In this study, the effect of extract of Corydalis yanhusuo (ECT) used in Oriental medicine therapy was investigated on the cell growth and apoptosis of HepG2 human hepatoma cells. It was found that ECT could inhibit the cell growth effectively in a dose-dependent manner, which was associated with morphological change and apoptotic cell death such as formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase. And we observed the effects of ECT on loss of mitochondrial membrane potential (MMP), using the JC-1 probe by DNA flow cytometric analysis. Apoptosis of HepG2 cells by ECT was associated with a down-regulation of anti apoptotic Bcl-2 expression, inhibitor of apoptosis proteins (IAPs) expression and proteolytic activation of caspase-3 and caspase-9. However, ECT did not affect the pro-apoptotic Bax expression and activity of caspase-8. ECT treatment also concomitant degradation and /or inhibition of poly (ADP-ribose) polymerase (PARP), phospholipase C-1 ($PLC{\gamma}1$). Furthermore, ECT treatment caused a dose-dependent inhibition of iNOS and cyclooxygenase-2 (Cox-2). Additionally ECT have been implicated in the regulation of telomerase expression. ECT treatment induced the down-regulation of telomerase reverse transcriptase mRNA (hTERT) expression of HepG2 cells. Taken together, these findings suggest that ECT may be a potential chemotherapeutic agent for the control of HepG2 human hepatoma cells.

CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation

  • Kim, Hyo-Jeong;Zheng, Min;Kim, Seul-Ki;Cho, Jung-Jee;Shin, Chang-Ho;Joe, Yeon-Soo;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.376-382
    • /
    • 2011
  • Background: Carbon monoxide (CO) is a cytoprotective and homeostatic molecule with important signaling capabilities in physiological and pathophysiological situations. CO protects cells/tissues from damage by free radicals or oxidative stress. NAD(P)H:quinone oxidoreductase (NQO1) is a highly inducible enzyme that is regulated by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, which is central to efficient detoxification of reactive metabolites and reactive oxygen species (ROS). Methods: We generated NQO1 promoter construct. HepG2 cells were treated with CO Releasing Molecules-2 (CORM-2) or CO gas and the gene expressions were measured by RT-PCR, immunoblot, and luciferase assays. Results: CO induced expression of NQO1 in human hepatocarcinoma cell lines by activation of Nrf2. Exposure of HepG2 cells to CO resulted in significant induction of NQO1 in dose- and time-dependent manners. Analysis of the NQO1 promoter indicated that an antioxidant responsible element (ARE)-containing region was critical for the CO-induced Nrf2-dependent increase of NQO1 gene expression in HepG2 cells. Conclusion: Our results suggest that CO-induced Nrf2 increases the expression of NQO1 which is well known to detoxify reactive metabolites and ROS.

Anti-growth Effects of Imatinib and GNF5 via Regulation of Skp2 in Human Hepatocellular Carcinoma Cells

  • Kim, Sung Hyun;Kim, Myoung-Ok;Kim, Ki-Rim
    • Journal of Cancer Prevention
    • /
    • 제23권4호
    • /
    • pp.170-175
    • /
    • 2018
  • Background: Human hepatocellular carcinoma (HCC) is a common liver tumor and the main cause of cancer-related death. Tyrosine kinase inhibitors, such as imatinib and GNF5 which were developed to treat chronic myelogenous leukemia, regulate the progression of various cancers. The aim of this study was to confirm the anti-tumor activity of tyrosine kinase inhibitors through regulation of S-phase kinase-associated protein 2 (Skp2), an important oncogenic factor in various cancer cells, in human hepatocarcinoma SK-HEP1 cells. Methods: Cell viability and colony formation assays were conducted to evaluate the effects of imatinib, GNF5 and GNF2 on the growth of SK-HEP1 cells. Using immunoblot analysis, we assessed change of the activation of caspases, PARP, Akt, mitogen-activated protein kinases, and Skp2/p27/p21 pathway by imatinib and GNF5 in SK-HEP1 cells. Using sh-Skp2 HCC cells, the role of Skp2 in the effects of imatinib and GNF5 was evaluated. Results: Imatinib and GNF5 significantly inhibited the growth of SK-HEP1 cells. Treatment of imatinib and GNF5 decreased Skp2 expression and Akt phosphorylation, and increased the expression of p27, p21, and active-caspases in SK-HEP1 cells. In sh-Skp2 HCC cells, cell growth and the expression of Skp2 were inhibited by more than in the mock group treated with imatinib and GNF5. Conclusions: These results suggest that the anti-growth activity of tyrosine kinase inhibitors may be associated with the regulation of p27/p21 and caspases through Skp2 blockage in HCC cells.

Ginsenoside F2 enhances glucose metabolism by modulating insulin signal transduction in human hepatocarcinoma cells

  • Shengqiang Han ;Long You ;Yeye Hu ;Shuai Wei ;Tingwu Liu ;Jae Youl Cho ;Weicheng Hu
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.420-428
    • /
    • 2023
  • Background: Ginsenoside F2 (GF2), a minor component of Panax ginseng, has been reported to possess a wide variety of pharmacological activities. However, its effects on glucose metabolism have not yet been reported. Here, we investigated the underlying signaling pathways involved in its effects on hepatic glucose. Methods: HepG2 cells were used to establish insulin-resistant (IR) model and treated with GF2. Cell viability and glucose uptake-related genes were also examined by real-time PCR and immunoblots. Results: Cell viability assays showed that GF2 up to 50 μM did not affect normal and IR-HepG2 cell viability. GF2 reduced oxidative stress by inhibiting phosphorylation of the mitogen-activated protein kinases (MAPK) signaling components such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK, and reducing the nuclear translocation of NF-κB. Furthermore, GF2 activated PI3K/AKT signaling, upregulated the levels of glucose transporter 2 (GLUT-2) and GLUT-4 in IR-HepG2 cells, and promoted glucose absorption. At the same time, GF2 reduced phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression as well as inhibiting gluconeogenesis. Conclusion: Overall, GF2 improved glucose metabolism disorders by reducing cellular oxidative stress in IR-HepG2 cells via MAPK signaling, participating in the PI3K/AKT/GSK-3β signaling pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.

C3H/HeJ 마우스 간암에서 MEK 억제제에 의한 방사선 감수성 향상 효과 (Enhancement of Tumor Response by MEK Inhibitor in Murine HCa-I Tumors)

  • 김성희;성진실
    • Radiation Oncology Journal
    • /
    • 제21권3호
    • /
    • pp.207-215
    • /
    • 2003
  • 목적: Extracellular signal-regulated kinase (ERK)는 mitogen-activated protein kinase cascade의 일원으로 다양한 세포독성 자극에 의해 유도되는 apoptosis에 반대되는 역할을 한다. 따라서 ERK의 억제는 항암제로서 유용하게 사용될 것으로 생각되어진다. 대상 및 방법: 마우스 간암인 HCa-I는 TCD50가 80 Gy 이상으로 강한 방사선 내성종양으로 알려져 있으며, 방사선 민감성의 증진을 위해 다양한 항암제가 실험되었으나 뚜렷한 효과를 나타내지 못했다. 이 실험을 통해 in vivo,, 특히 방사선 내성종양에서 ERK의 억제가 방사선에 의한 항암 작용을 증진시키는지 알아보고자 하였다. C3H/HeJ 마우스에 종양의 크기가 $7.5\~8\;mm$가 되었을 때 PD98059 ($0.16\;\mug/50\;\mul$로 종양에 직접 주사)를 처리하였다. 결과: 처리 1시간째에 p-ERK가 0.5배로 억제되었다. 종양 성장 지연 분석에서 증강 지수가 전 처리군과 후 처리군에서 각각 1.6과 1.87로 PD98059가 종양의 방사선 감수성을 증가시키는 것으로 관찰되었다. 25 Gy 방사선과 PD98059 복합처리 시 apoptosis가 크게 증가되었다. 각 실험군의 apoptosis 최대치는 방사선 조사군에서 $1.4\%$, PD98059 처리군에서 $0.9\%$ 복합처리군의 전 처리군과 후 처리군에서 각각 $4.9\%\;5.3\%$를 나타냈다. Apoptosis 조절 물질의 변화는, p53의 발현이 복합 처리군에서 PD98059 전 처리군과 후 처리군 모두에서 24시간까지 대조군에 비해 2.7배, 3.2배의 높은 발현 수준을 유지하여 처리 1시간째부터 발현 증가를 하여 24시간까지 지속되는 것이 관찰되었다. $p21^{WAF1/CIP1}$의 발현은 p53 발현 변화와 유사한 양상으로 특히 PD98059 후 처리군에서 방사선 조사군이나 PD98059 전 처리군과 비교하여 높은 발현수준을 보였으며, 24시간까지 3.2배의 높은 발현 수준을 유지하는 것으로 나타났다. Bcl-Xs는 25 Gy 방사선 조사군이나 PD98059 처리군에서는 뚜렷한 변화를 보이지 않았으나 복합 처리군중 전 처리군에서 4시간 째 대조군에 비해 1.93배 증가를 보였으며, 후 처리군에서는 1시간 후에 1.83배의 증가를 보였다. 모든 실험군에서 Bcl-2, $Bcl-X_L$, BaX는 뚜렷한 발현 변화를 보이지 않았다. 결론: 방사선 내성 종양인 간암에 MEK 억제제를 방사선 조사와 복합 처리하여 방사선 감수성을 향상시켜 치료 효율의 상승을 유도 할 수 있을 것으로 생각된다.