• Title/Summary/Keyword: Hepatic uptake clearance

Search Result 19, Processing Time 0.027 seconds

Hepatic Drug Clearance of Animal in Disease States I -Hepato-biliary Transport of Bromphenol Blue in Acute $CCl_4$ Intoxicated Rabbits- (병태동물(病態動物)에서의 약물(藥物)의 Hepatic Clearance에 관한 연구(硏究) I -병태가토(病態家兎)에서의 Bromphenol Blue의 간담수송(肝膽輸送)-)

  • Woo, Chong-Hak;Kim, Shin-Keun;Lee, Min-Hwa;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 1980
  • Bromphenol blue (BPB) was studied with rabbits in normal and disease states to understand the basic principles of hepato-biliary transport process, and the effect of disease states on the drug disposition. The time course of plasma concentration and of biliary excretion was studied in normal and $CCl_4$ intoxicated rabbits. A conspicuous retention of BPB clearance from the plasma was observed, and the slope of the first-phase of plasma curve was decreased in the intoxicated rabbits. The shape of biliary excretion was same in normal and intoxicated states, but the amount of BPB excreted into bile in the intoxicated states was much smaller than in normal states. A relationship was found which enables one to predict the pattern of uptake of BPB by the liver, and the pattern of excretion into the bile in normal states, but was not in $CCl_4$ intoxicated states. It may be that the application of this experiments would extend the effect of disease states on the drug disposition.

  • PDF

Effect of a New Hepatoprotective Agent, YH-439, on the Hepatobiliary Transport of Organic Cations (OCs): Selective Inhibition of Sinusoidal OCs Uptake without Influencing Glucose Uptake and Canalicular OCs Excretion

  • Hong Soon Sun;Li Hong;Choi Min Koo;Chung Suk Jae;Shim Chang Koo
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.330-334
    • /
    • 2005
  • The effect of a new hepatoprotective agent, YH-439, on the hepatobiliary transport of a model organic cation (OC), TBuMA (tributylmethylammonium), was investigated. The area under the plasma concentration-time curve (AUC) from time zero to 4 h following iv administration of TBuMA (6.6 $\mu$mol/kg) was increased significantly when YH-439 in corn oil (300 mg/kg) was orally administered to rats 24 h prior to the experiment. Nevertheless, the cumulative biliary excretion of TBuMA remained unchanged. As a consequence, the apparent biliary clearance ($CL_b$) of TBuMA was decreased significantly as a result of YH-439 pretreatment, consistent with the fact that the in vivo excretion clearance of TBuMA across the canalicular membrane ($CL_{exc}$) was not changed by the pretreatment. The in vitro uptake of TBuMA into isolated hepatocytes was decreased by one half by the pretreatment, owing to a decrease in the apparent V$_{max}$ and $CL_{linear}$, but the $K_m$ for the process remained constant. Most interestingly, however, the sinusoidal uptake of glucose, a nutrient, into hepatocytes was not influenced by the pretreatment, suggesting the YH-439 pretreatment specifically impaired the sinusoidal uptake of OCs. Thus, the OC-specific inhibition of hepatic uptake, without influencing the uptake of glucose, a nutrient, appeared to be associated with the hepatoprotective activity of YH-439.

Medium-chain fatty acid enriched-diacylglycerol (MCE-DAG) accelerated cholesterol uptake and synthesis without impact on intracellular cholesterol level in HepG2 (중쇄지방산 강화 디아실글리세롤(MCE-DAG)이 간세포 내 콜레스테롤 흡수 및 합성 기전에 미치는 영향)

  • Kim, Hyun Kyung;Choi, Jong Hun;Kim, Hun Jung;Kim, Wooki;Go, Gwang-woong
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.272-277
    • /
    • 2019
  • The effects of medium-chain enriched diacylglycerol (MCE-DAG) oil on hepatic cholesterol homeostasis were investigated. HepG2 hepatocytes were treated with either 0.5, 1.0, or $1.5{\mu}g/mL$ of MCE-DAG for 48 h. There was no evidence of cytotoxicity by MCE-DAG up to $1.5{\mu}g/mL$. The level of proteins for cholesterol uptake including CLATHRIN and LDL receptor increased by MCE-DAG in a dose-dependent manner (p<0.05). Furthermore, proprotein convertase subtilisin/kexin type 9, an inhibitor of LDLR, was dose-dependently diminished (p<0.05), indicating cholesterol clearance raised. MCE-DAG significantly increased 3-hydroxy-3-methylglutaryl-coenzyme A reductase and acetyl-CoA acetyltransferase2 (p<0.05), required for cholesterol synthesis, and their transcriptional regulator sterol regulatory element-binding protein2 (p<0.05). These findings suggest that given conditions of prolonged sterol fasting in the current study activated both hepatic cholesterol synthesis and clearance by MCE-DAG. However, total intracellular level of cholesterol was not altered by MCE-DAG. Taken together, MCE-DAG has the potential to prevent hypercholesterolemia by increasing hepatic cholesterol uptake without affecting intracellular cholesterol level.

Evaluation of Liver Function Using $^{99m}-Lactosylated$ Serum Albumin Liver Scintigraphy in Rat with Acute Hepatic Injury Induced by Dimethylnitrosamine (Dimethylnitrosamine 유발 급성 간 손상 흰쥐에서 $^{99m}-Lactosylated$ Serum Albumin을 이용한 간 기능의 평가)

  • Jeong, Shin-Young;Seo, Myung-Rang;Yoo, Jeong-Ah;Bae, Jin-Ho;Ahn, Byeong-Cheol;Hwang, Jae-Seok;Jeong, Jae-Min;Ha, Jeong-Hee;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.418-427
    • /
    • 2003
  • Objects: $^{99m}-lactosylated$ human serum albumin (LSA) is a newly synthesized radiopharmaceutical that binds to asialoglycoprotein receptors, which are specifically presented on the hepatocyte membrane. Hepatic uptake and blood clearance of LSA were evaluated in rat with acute hepatic injury induced by dimethylnitrosamine (DMN) and results were compared with corresponding findings of liver enzyme profile and these of histologic changes. Materials and Methods: DMN (27 mg/kg) was injected intraperitoneally in Sprague-Dawley rat to induce acute hepatic injury. At 3(DMN-3), 8(DMN-8), and 21 (DMN-21) days after injection of DMN, LSA injected intravenously, and dynamic images of the liver and heart were recorded for 30 minutes. Time-activity curves of the heart and liver were generated from regions of interest drawn over liver and heart area. Degree of hepatic uptake and blood clearance of LSA were evaluated with visual interpretation and semiquantitative analysis using parameters (receptor index : LHL3 and index of blood clearance : HH3), analysis of time-activity curve was also performed with curve fitting using Prism program. Results: Visual assessment of LSA images revealed decreased hepatic uptake in DMN treated rat, compared to control group. In semiquantitative analysis, LHL3 was significantly lower in DMN treated rat group than control rat group (DMN-3: 0.842, DMN-8: 0.898, DMN-21: 0.91, Control: 0.96, p<0.05), whereas HH3 was significantly higher than control rat group (DMN-3: 0.731,.DMN-8: 0.654, DMN-21: 0.604, Control: 0.473, p<0.05). AST and ALT were significantly higher in DMN-3 group than those of control group. Centrilobular necrosis and infiltration of inflammatory cells were most prominent in DMN-3 group, and were decreased over time. Conclusion: The degree of hepatic uptake of LSA was inversely correlated with liver transaminase and degree of histologic liver injury in rat with acute hepatic injury.

Different Pharmacokinetics of Aucubin in Rats of Carbon tetrachloride and D-Galactosamine-induced Hepatic Failure (사염화탄소와 갈락토사민 간장해 시의 오큐빈의 체내동태 차이)

  • 김미형;심창구;장일무
    • YAKHAK HOEJI
    • /
    • v.37 no.4
    • /
    • pp.383-388
    • /
    • 1993
  • Pharmacokinetics of aucubin, an irdoid glucoside, was compared in rats of experimental hepatic failure(EHF). EHF was induced by CCI$_{4}$ or D-galactosamine pretreatment. This work was designed to find out any differences in the pharmacokinetics of aucubin that may explain the different protective effect of aucubin on CCI$_{4}$- and galactosamine-induced EHF : aucubin reportedly protected CCI$_{4}$-inducing hepatotoxicity effectively, but did not for galactosamine-hepatotoxicity. EHF was induced by intraperitoneal injection Of CCI$_{4}$(0.9ml/kg) or galactosamine(250 mg/kg) to Wistar rats 24 hr before the pharmacokinetic study. The rats were fasted during the 24 hr. Aucubin was iv injected at a dose of 15 mg/kg and the plasma aucubin was assayed by HPLC. There were no significant differences in the pathophysiologies(body weight, liver weight, GTP, hematocrit, blood cell distrbution and plasma protein binding of aucubin) between the two EHF models except GOP which was significantly (p<0.05) higher in CCI$_{4}$-than in galactosamine-EHF. On the other hand, pharmacokinetics of aucubin such as total cleatance(CL$_{t}$), distribution volume at steady-state(Vd$_{ss}$), and mean residence time(MRT) differed significantly(p<0.05) between the models : for example, CL$_{t}$ was increased two fold by CCI$_{4}$, but not by galaclosamine ; Vd$_{ss}$, in galactosamine-EHF was higher than that in CCI$_{4}$-EHF ; MRT was decreased by CCI$_{4}$, but increased conversely by galactosamine. The increase of CL$_{t}$(and decrease of MRT) in rats of CCI$_{4}$-EHF was contrary to the general expectation for the hepatic failure : most of the hepatic failures have been known to decrease CL$_{t}$ of the administered drugs. Whether the difference in the pharmacokinetics is responsible for the different protective effect of aucubin against the two EHF models is of interest. However, much more studies on biliary excretion, urinary excretion, and hepatic uptake in cellular level should be preceded before any conclusions are made on the role of different pharmacokinetics on the different pharmacology of aucubin.

  • PDF

Triglyceride-Rich Lipoproteins and Novel Targets for Anti-atherosclerotic Therapy

  • Reiner, Zeljko
    • Korean Circulation Journal
    • /
    • v.48 no.12
    • /
    • pp.1097-1119
    • /
    • 2018
  • Although elevated serum low-density lipoprotein-cholesterol (LDL-C) is without any doubts accepted as an important risk factor for cardiovascular disease (CVD), the role of elevated triglycerides (TGs)-rich lipoproteins as an independent risk factor has until recently been quite controversial. Recent data strongly suggest that elevated TG-rich lipoproteins are an independent risk factor for CVD and that therapeutic targeting of them could possibly provide further benefit in reducing CVD morbidity, events and mortality, apart from LDL-C lowering. Today elevated TGs are treated with lifestyle interventions, and with fibrates which could be combined with omega-3 fatty acids. There are also some new drugs. Volanesorsen, is an antisense oligonucleotid that inhibits the production of the Apo C-III which is crucial in regulating TGs metabolism because it inhibits lipoprotein lipase (LPL) and hepatic lipase activity but also hepatic uptake of TGs-rich particles. Evinacumab is a monoclonal antibody against angiopoietin-like protein 3 (ANGPTL3) and it seems that it can substantially lower elevated TGs levels because ANGPTL3 also regulates TGs metabolism. Pemafibrate is a selective peroxisome proliferator-activated receptor alpha modulator which also decreases TGs, and improves other lipid parameters. It seems that it also has some other possible antiatherogenic effects. Alipogene tiparvovec is a nonreplicating adeno-associated viral vector that delivers copies of the LPL gene to muscle tissue which accelerates the clearance of TG-rich lipoproteins thus decreasing extremely high TGs levels. Pradigastat is a novel diacylglycerol acyltransferase 1 inhibitor which substantially reduces extremely high TGs levels and appears to be promising in treatment of the rare familial chylomicronemia syndrome.

Biodistribution of $^{99m}Tc$-Lactosylated Serum Albumin in Mice with Diethylnitrosamine or Thiacetamide Induced Liver Injury (Diethylnitrosamine 및 Thioacetamide 유발 간손상 생쥐에서의 $^{99m}Tc$-Lactosylated Serum Albumin의 체내 분포상)

  • Whang, Jae-Seok;Ahn, Byeong-Cheol;Sung, Young-Ok;Seo, Ji-Hyoung;Bae, Jin-Ho;Jeong, Shin-Young;Yoo, Jung-Soo;Jeong, Jae-Min;Lee, Jae-Tae;Lee, Kyu-Bo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.200-208
    • /
    • 2005
  • Purpose: Tc-99m labeled diethylenetriaminepentaacctic acid (DTPA)-coupled galactosylated human serum albumin (GSA) is a currently used imaging agent for asialoglycoprotein receptor (ASGPR) of the liver, but, it has several shortcomings. Recently a new ASGPR imaging agent, $^{99m}Tc$-lactosylated human serum albumin (LSA), with simple labeling procedure, high labeling efficiency, high stability was developed. In order to assess the feasibility of the $^{99m}Tc$-LSA as a ASGPR imaging radiopharmaceuticals, we performed biodistribution study of the tracer in liver injured mice model and the results were compared with histolgic data. Materals and Methods: To induce hepatic damage in ICR mice, diethylnitrosamine (DEN) ($60mg/kg/week{\times}5time$, low dose or $180mg/kg/week{\times}2times$, high dose) and thioacetamide (TAA) ($50mg/kg{\times}1time$) were administrated intraperitoneally. Degree of liver damage was evaluated by tissue hematoxilin-eosin stain, and expression of asialoglycoprotein receptor (ASGPR) was assessed by immunohistochemistry using ASGPR antibody. $^{99m}Tc$-LSA was intravenously administrated via tail vein in DEN or TAA treated mice, and biodistribution study of the tracer was also performed. Results: DEN treated mice showed ballooning of hepatocyte and inflammatory cell infiltration in low dose group and severe hapatocyte necrosis in high dose group, and low dose group showed higher ASGPR staining than control mice in immunohistochemical staining. TAA treated mice showed severe hepatic necrosis. $^{99m}Tc$-LSA Biodistribution study showed that mice with hepatic necrosis induced by high dose DEN or TAA revealed higher blood activity and lower liver activity than control mice, due to slow clearance of the tracer by the liver. The degree of liver uptake was inversely correlated with the degree of histologic liver damage. But low dose DEN treated mice with mild hepatic injury showed normal blood clearance and hepatic activity, partly due to overexpression of ASGPR in mice with mild degree hepatic injury. Conclusion: Liver uptake of $^{99m}Tc$-LSA was inversely correlated with degree of histologic hepatic injury in DEN and TAA treated mice. These results support that $^{99m}Tc$-LSA can be used to evaluate the liver status in liver disease patients.

$^{99m}Tc-DTPA$ Galactosyl Human Serum Albumin Scintigyaphy in Mushiroom Poisoning Patient : Comparison with Liver Ultrasonography (버섯 중독 환자에서의 $^{99m}Tc-galactosyl$ human serum albumin (GSA) scintigraphy 소견 : 간초음파 소견과의 비교)

  • Jeong, Shin-Young;Lee, Jea-Tae;Bae, Jin-Ho;Chun, Kyung-Ah;Ahn, Byeong-Cheol;Kang, Young-Mo;Jeong, Jae-Min;Lee, Kyu-Bo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.4
    • /
    • pp.254-259
    • /
    • 2003
  • $^{99m}Tc-galactosyl$ human serum albumin (Tc-GSA) is a radiopharmaceutical that binds to asialoglycoprotein receptors, which are specifically present in the hepatocyte membrane. Because these receptors are decreased in hepatic parenchymal damage, the degree of Tc-GSA accumulation in the liver correlates with findings of liver function test. Hepatic images were performed with Tc-GSA in patients with acute hepatic dysfunction by Amantia Subjunquillea poisoning, and compared with these of liver ultrasonography (USG). Tc-GSA (185 MBq, 3 mg of GSA) was injected intravenously, and dynamic images were recorded for 30 minutes. Time-activity curves for the heart and liver were generated from regions of interest for the whole liver and precordium. Degree of hepatic uptake and clearance rate of Tc-GSA were generated by visual interpretation and semiquantitative analysis parameters (receptor index : LHL15 and index of blood clearance : HH15). Visual assessment of GSA scintigraphy revealed mildly decreased liver uptake in all of subjects. The mean LHL15 and HH15 were 0.886 and 0.621, graded as mild dysfunction in 2, and mild to moderate dysfunction in 1 subject. In contrast, liver USG showed no remarkable changes of hepatic parenchyme. Tc-GSA scintigraphy was considered as a useful imaging modality in the assessment of the hepatic dysfunction.

Synthesis Characterization and Biodistribution of $^{99m}Tc$-Ethyl-3-Isocyanobutyrate as a New Myocardial Perfusion Agent (새로운 심관관류 영상 화합물로서 $^{99m}Tc$-Ethyl-3-Isocyano-butyrate의 합성, 표지 및 체내동태에 대한 연구)

  • Lee, Myung-Chul;Cho, Jung-Hyuck;Lee, Dong-Soo;Lim, Sang-Moo;Oh, Seung-Joon;Chung, Soo-Wook;Lee, Kyung-Han;Jeong, Jae-Min;Chung, June-Key;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.223-232
    • /
    • 1993
  • Technetium labeled isonitrile analogues are widely used as myocardial perfusion imaging agents. We synthesized and characterized a new isonitrile compound, ethyl 3-isocyanobutyrate(EIB). Proton and $^{13}C$ NMR spectroscopy and thin layer chromatography with a $C_{18}$ coat was performed. EIB was easily labeled with $^{99m}TcO_4^-$- with sodium dithionite. The labeling efficiency measured by RP-HPLC was over 95%. The labeled product was stable with dilution in normal saline and with prolonged incubation at room temperature. There was no formation of secondary products or free $^{99m}TcO_4^-$. In vivo kinetics study of $^{99m}Tc$ (I) labeled EIB in rabbits showed adequate myocardial uptake, good contrast against lung background, and relatively rapid liver clearance. The heart to lung ratio was over 2.5 and the heart to liver ratio was approximately from 0.4 to 5 at 60 minutes post injection. Hepatic clearance of $^{99m}Tc-MIBI$ was faster ($t_{1/2}$=6 minutes) than that of $^{99m}Tc-MIBI$. In vivo kinetics observed in dog was similar to that in rabbit but there was faster gallbladder filling, and thus lower liver background. SPECT imaging of the canine myocardium showed favorable imaging characteristics. However, biodistribution in mice demonstrated a myocardial % injected dose/organ of less than 0.1%. This was thought to be due to interspecies difference in plasma esterase activity. In human plasma, $^{99m}Tc$ ( I ) labeled EIB was stable for at least 2 hours, without production of secondary products by HPLC. We conclude that ethyl 3-isocyanobutyrate may be a potential new myocardial perfusion imaging agent and deserves further investigation as to its usefulness for clinical use.

  • PDF