Browse > Article
http://dx.doi.org/10.9721/KJFST.2019.51.3.272

Medium-chain fatty acid enriched-diacylglycerol (MCE-DAG) accelerated cholesterol uptake and synthesis without impact on intracellular cholesterol level in HepG2  

Kim, Hyun Kyung (Department of Food and Nutrition, Hanyang University)
Choi, Jong Hun (R&D Center, Nongshim)
Kim, Hun Jung (R&D Center, Nongshim)
Kim, Wooki (Department of Food Science and Biotechnology, Kyung Hee University)
Go, Gwang-woong (Department of Food and Nutrition, Hanyang University)
Publication Information
Korean Journal of Food Science and Technology / v.51, no.3, 2019 , pp. 272-277 More about this Journal
Abstract
The effects of medium-chain enriched diacylglycerol (MCE-DAG) oil on hepatic cholesterol homeostasis were investigated. HepG2 hepatocytes were treated with either 0.5, 1.0, or $1.5{\mu}g/mL$ of MCE-DAG for 48 h. There was no evidence of cytotoxicity by MCE-DAG up to $1.5{\mu}g/mL$. The level of proteins for cholesterol uptake including CLATHRIN and LDL receptor increased by MCE-DAG in a dose-dependent manner (p<0.05). Furthermore, proprotein convertase subtilisin/kexin type 9, an inhibitor of LDLR, was dose-dependently diminished (p<0.05), indicating cholesterol clearance raised. MCE-DAG significantly increased 3-hydroxy-3-methylglutaryl-coenzyme A reductase and acetyl-CoA acetyltransferase2 (p<0.05), required for cholesterol synthesis, and their transcriptional regulator sterol regulatory element-binding protein2 (p<0.05). These findings suggest that given conditions of prolonged sterol fasting in the current study activated both hepatic cholesterol synthesis and clearance by MCE-DAG. However, total intracellular level of cholesterol was not altered by MCE-DAG. Taken together, MCE-DAG has the potential to prevent hypercholesterolemia by increasing hepatic cholesterol uptake without affecting intracellular cholesterol level.
Keywords
cholesterol clearance; cholesterol homeostasis; cholesterol synthesis; medium-chain fatty acid enriched-diacylglycerol; structured lipid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tada N, Shoji K, Takeshita M, Watanabe H, Yoshida H, Hase T, Matsuo N, Tokimitsu I. Effects of diacylglycerol ingestion on postprandial hyperlipidemia in diabetes. Clin. Chim. Acta. 353: 87-94 (2005)   DOI
2 Tada N, Watanabe H, Matsuo N, Tokimitsu I, Okazaki M. Dynamics of postprandial remnant-like lipoprotein particles in serum after loading of diacylglycerols. Clin. Chim. Acta. 311: 109-117 (2001)   DOI
3 Tang JJ, Li JG, Qi W, Qiu WW, Li PS, Li BL, Song BL. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab. 13: 44-56 (2011)   DOI
4 The Korean Society of Lipid and Atherosclerosis . Dyslipidemia fact sheets in Korea 2018. Available from; http://www.lipid.or.kr/bbs/index.html?code=fact_sheet&category=&gubun=&page=1&number=896&mode=view&keyfield=&key=. Accessed May 10, 2019.
5 Tsuji H, Kasai M, Takeuchi H, Nakamura M, Okazaki M, Kondo K. Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J. Nutr. 131: 2853-2859 (2001)   DOI
6 Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, Goldstein JL, Brown MS. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110: 489-500 (2002)   DOI
7 Yasukawa T, Yasunaga K. Nutritional functions of dietary diacylglycerols. J. Oleo Sci. 50: 427-432 (2001)   DOI
8 Ye ZJ, Go GW, Singh R, Liu W, Keramati AR, Mani A. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake. J. Biol. Chem. 287: 1335-1344 (2012)   DOI
9 Dietschy JM, Turley SD, Spady DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J. Lipid Res. 34: 1637-1659 (1993)   DOI
10 DeBose-Boyd RA, Brown MS, Li WP, Nohturfft A, Goldstein JL, Espenshade PJ. Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 99: 703-712 (1999)   DOI
11 Go GW. Low-density lipoprotein receptor-related protein 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis. Nutrients 7: 4453-4464 (2015)   DOI
12 Goldstein L, Brown S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46: 897-930 (1977)   DOI
13 Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D, Trillard M, Abifadel M, Tebon A, Attie AD, Rader DJ, Boileau C, Brissette L, Chretien M, Prat A, Seidah NG. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem. 279: 48865-48875 (2004)   DOI
14 Goldstein J, Hobbs H, Brown M. Familial Hypercholesterolemia. pp. 2863-2913. The online metabolic and molecular bases of inherited disease. Valle D, Beaudet A, Vogelstein B, Kinzler K, Antonarakis S, Ballabio A, Gibson K, Mitchell G (eds), McGraw-Hill, Inc., New York, NY, USA (2016)
15 Han J, Hamilton JA, Kirkland JL, Corkey BE, Guo W. Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats. Obes. Res. 11: 734-744 (2003)   DOI
16 Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109: 1125-1131 (2002)   DOI
17 Burg JS, Espenshade PJ. Regulation of HMG-CoA reductase in mammals and yeast. Prog. Lipid. Res. 50: 403-410 (2011)   DOI
18 Cheng X, Li J, Guo D. SCAP/SREBPs are central play in lipid metabolism and novel metabolic targets in cancer theraphy. Curr. Top. Med. Chem. 18: 484-493 (2018)   DOI
19 Brown AJ. Understanding the cellular cholesterol economy. Available from: http://www.athero.org/commentaries/comm1280.asp. Accessed May 11, 2019.
20 Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. 100: 12027-12032 (2003)   DOI
21 Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martinez L, Souza PC, Saidemberg D, Deng T. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) ${\gamma}$ activators and pan-PPAR partial agonists. PLoS One 7: e36297 (2012)   DOI
22 Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J. Clin. Invest. 101: 2331-2339 (1998)   DOI
23 Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92: 883-893 (1993)   DOI
24 Jones C, Garuti R, Michaely P, Li WP, Maeda N, Cohen JC, Herz J, Hobbs HH. Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia. J. Clin. Invest. 117: 165-174 (2007)   DOI
25 Kim H, Choe JH, Choi JH, Kim HJ, Park SH, Lee MW, Kim W, Go Gw. Medium-Chain Enriched Diacylglycerol (MCE-DAG) oil decreases body fat mass in mice by increasing lipolysis and thermogenesis in adipose tissue. Lipids 52: 665-673 (2017)   DOI
26 Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels. Circulation 118: 2047-2056 (2008)   DOI
27 Lo SK, Tan CP, Long K, Yusoff MSA, Lai OM. Diacylglycerol oilproperties, processes and products: a review. Food Bioprocess Tech. 1: 223-233 (2008)   DOI
28 Marten B, Pfeuffer M, Schrezenmeir J. Medium-chain triglycerides. Int. Dairy J. 16: 1374-1382 (2006)   DOI
29 Loewen CJ, Levine TP. Cholesterol homeostasis: not until the SCAP lady INSIGs. Curr. Biol. 12: R779-R781 (2002)   DOI
30 Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl. Acad. Sci. 101: 7100-7105 (2004)   DOI
31 Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem. 279: 50630-50638 (2004)   DOI
32 Mishra SK, Keyel PA, Edeling MA, Dupin AL, Owen DJ, Traub LM. Functional dissection of an AP-2 beta2 appendage-binding sequence within the autosomal recessive hypercholesterolemia protein. J. Biol. Chem. 280: 19270-19280 (2005)   DOI
33 Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102: 315-323 (2000)   DOI
34 Norman D, Sun XM, Bourbon M, Knight BL, Naoumova RP, Soutar AK. Characterization of a novel cellular defect in patients with phenotypic homozygous familial hypercholesterolemia. J. Clin. Invest. 104: 619-628 (1999)   DOI
35 Rong S, Cortes VA, Rashid S, Anderson NN, McDonald JG, Liang G, Moon YA, Hammer RE, Horton JD. Expression of SREBP-1c requires SREBP-2 mediated generation of a sterol ligand for LXR in livers of mice. Elife. pii: e25015. doi: 10.7554/eLife.25015 (2017)   DOI
36 Sung MH, Liao FH, Chien YW. Medium-chain triglycerides lower blood lipids and body weight in streptozotocin-induced type 2 diabetes rats. Nutrients Doi: 10.3390/nu10080963 (2018)   DOI
37 Sakai J, Nohturfft A, Cheng D, Ho Y, Brown MS, Goldstein JL. Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J. Biol. Chem. 272: 20213-20221 (1997)   DOI
38 Stancu C, Sima A. Statins: mechanism of action and effects. J. Cell. Mol. Med. 5: 378-387 (2001)   DOI
39 Statistics Korea. Cause of death in 2017. Available from: https://www.gov.kr/portal/ntnadmNews/1605663. Accessed May 10, 2019 (2018)