• 제목/요약/키워드: Hepatic gene expression

검색결과 216건 처리시간 0.029초

Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice

  • Kim, Young-Je;Yoon, Dae Seong;Jung, Un Ju
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.431-443
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have beneficial effects on cardiovascular and metabolic health. However, there is limited research investigating the effect of long-term supplementation with low-dose NOB on high-cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia and NAFLD in HCD-fed mice. SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks. RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, with no apparent energy intake differences. NOB supplementation suppressed HCD-induced weight loss without altering energy intake. Moreover, NOB significantly decreased the total cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin and paraoxonase were higher in the NOB-supplemented group than in the HCD control group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-related gene expression and enzyme activities. Dietary NOB supplementation may protect against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-fed mice; these effects are associated with the amelioration of inflammation and reductions in the levels of atherosclerosis-associated cardiovascular markers. CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.

청간해주탕(淸肝解酒湯)이 $TGF-{\beta}1$ 유도성 간섬유화에 미치는 영향 (The Effect of Chungganhaeju-tang on $TGF-{\beta}1-induced$ Hepatic Fibrosis)

  • 이지현;김영철;우홍정;이장훈
    • 대한한방내과학회지
    • /
    • 제26권1호
    • /
    • pp.93-106
    • /
    • 2005
  • Objectives : The aim of this study is to characterize the effect of Chungganhaeju-tang on $TGF-{\beta}l$-induced hepatic fibrosis. Materials and Methods : mRNA and protein expression levels of $TGF-{\beta}l$ in Chungganhaeju-tang treated HepG2 cells were compared to untreated cells using quantitative RT-PCR and ELISA assay, respectively. mRNA expression levels of the $TGF-{\beta}l$ signaling pathway genes $(T{\beta}R-I,\;T{\beta}R-II,\;Smad2,\;Smad3,\;Smad4,\;and\;PAI-1)$ and fibrosis-associated genes (CTGF, fibronectin, and collagen type $l{\alpha}$) were evaluated by quantitative RT-PCR. The effect of Chungganhaeju-tang on cell proliferation of T3891 human fibroblast was evaluated using $[^3H]Thymidine$ Incorporation Assay. Results : Inhibition of $TGF-{\beta}l$ mRNA expression and protein production was observed with treatment of Chungganhaeju-tang and seen to be dose and time dependent. Whereas $TGF-{\beta}l$-mediated induction of PAI-1 was suppressed with treatment of Chungganhaeju-tang, expression of the $TGF-{\beta}l$ signaling pathway genes such as $T{\beta}R-I$, $T{\beta}R-II$, Smad2, Smad3, and Smad4 was not affected. With treatment of Chungganhaeju-tang, inhibition of $TGF-{\beta}l$-induced cell proliferation of T3891 human fibroblast was observed, as well as abrogation of $TGF-{\beta}l$-mediated transcriptional up-regulation of CTGF, fibronectin, and collagen type $I{\alpha}$. Conclusion : This study strongly suggests that the liver cirrhosis-suppressive activity of Chungganhaeju-tang may be derived at least in part from its inhibitory effect on $TGF-{\beta}l$ functions, such as blockade of $TGF-{\beta}l$ stimulation of fibroblast cell proliferation and fibrosis-related gene expression as well as expression of $TGF-{\beta}l$ itself.

  • PDF

Curcumin Reorganizes miRNA Expression in a Mouse Model of Liver Fibrosis

  • Hassan, Zeinab Korany;Al-Olayan, Ebtisam M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5405-5408
    • /
    • 2012
  • Curcumin (CM), a biphenyl compound, possesses anti-inflammatory, antioxidant and antimicrobial activity. MicroRNAs (miRNAs) are small noncoding RNAs which regulate gene expression and the molecular mechanisms of several biological processes. Liver fibrosis is a major cause of hepatic dysfunction and cancer and there are few effective therapies emphasizing the need for new approaches to control. The present study was conducted to investigate the effect of curcumin (CM) on liver fibrosis through modulating the expression level of miRNAs (199 and 200), the main miRNAs associated with liver fibrosis. Induction of liver fibrosis by carbon tetrachloride ($CCL_4$) was confirmed by histopathological examination. Mice were divided into 3 groups: group 1 were i.p injected with 10% $CCL_4$ twice weekly for 4 weeks and then once a week for the next 4 weeks followed by 4 weeks with olive oil only. Group 2 were i.p injected with 10% $CCL_4$ twice weekly for 4 weeks and then once a week for the next 4 weeks followed by curcumin (5 mg/mouse/day) once daily for the next 4 weeks. The third group was injected with olive oil. The expression level of miR-199 and miR-200 and some of their targeted genes were measured by real time PCR. miRNA (199 and 200) levels were significantly elevated in liver fibrotic tissues compared to control groups. Curcumin was significantly returned the expression levels of mir-199 and -200 with their associated target gene nearly to their normal levels. This is the first study that highlighted the effect of curcumin on liver fibrosis through regulation of miRNAs.

Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein

  • Hwang, Supyong;Kim, Soyoung;Kim, Kyungkon;Yeom, Jeonghun;Park, Sojung;Kim, Inki
    • BMB Reports
    • /
    • 제53권11호
    • /
    • pp.576-581
    • /
    • 2020
  • Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5-Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells.

랫드 간 Epoxide Hydrolase와 Glutathione S-Transferase 유전자 발현에 미치는 Progesterone의 효과 (Progesterone Effects on Microsomal Epoxide Hydrolase and Glutathione S-transferease mRNA Levels in Rats)

  • 조주연;김상건
    • 대한약리학회지
    • /
    • 제32권2호
    • /
    • pp.233-241
    • /
    • 1996
  • Previous studies have shown that glucocorticoid suppresses microsomal epoxide hydrolase(EH) gene expression and that EH expression is altered during pregnancy. The effects of progesterone on the expression of rat EH and certain glutathione S-transferase(GST) genes were examined in this study. Northern RNA blot analysis revealed that progesterone was effective in increasing hepatic EH mRNA levels at 12 h to 48 h after treatment with a maximal 9-fold increase being noted at 12 h time point. Nonetheless, multiple daily treatment with progesterone rather caused minimal relative increases in EH mRNA levels. GST Ya and Yb1/2 mRNA levels were also transiently elevated at 12 h after progesterone treatment, followed by gradual decreases from the maximal Increases at day 1, 2 and 5 post-treatment. These changes in EH and GST mRNA levels were noted only at a relatively high dose of progesterone. Furthermore, immunoblot analyses showed that rats treated with progesterone for 5 days failed to show EH or GST induction, indicating that progesterone-induced alterations in EH and GST mRNA levels do not reflect bona fide induction of the detoxifying enzymes. Concomitant progesterone treatment of rats with the known EH inducers including ketoconazole and clotrimazole failed to additively nor antagonistically alter EH mRNA levels. In contrast, dexamethasone substantially reduced ketoconazole- or clotrimazole-inducible EH expression. These results showed that progesterone stimulates the EH, GST Ya and Yb1/2 gene expression at early times followed by marked reduction in the RNA levels from the maximum after multiple treatment and that the changes in mRNA do not necessarily reflect induction of the proteins.

  • PDF

Expression of Cu/Zn Superoxide Dismutase (Cu/Zn-SOD) mRNA in Shark, Schyliorhinus torazame, Liver during Acute Cadmium Exposure

  • Cho, Young-Sun;Ha, En-Mi;Bang, In-Chul;Kim, Dong-Soo;Nam, Yoon-Kwon
    • 한국양식학회지
    • /
    • 제18권3호
    • /
    • pp.173-179
    • /
    • 2005
  • Superoxide dismutase (SOD), an antioxidant enzyme catalyzing the first step for scavenging the reactive oxygen species is important as an early warning indicator to address various biological stresses. For this reason, the monitoring the expressed pattern of SOD gene in fish organs is one of important biomarkers to assess the aquatic pollution caused by many toxic chemicals. Based on the Northern blot hybridization, semi-quantitative and/or realtime RT-PCRs, the alteration of SOD gene transcripts in shark liver was examined during the experimental acute exposures to cadmium. The expression of SOD at mRNA level was up-regulated both by injection (0, 0.5, 1 or 2 mg $CdCl_2/kg$ body weight for 48 hours) and by immersion (0 or $5{\mu}M$ Cd for 0, 1, 4 and 7 days) treatments of cadmium. The transcriptional stimulation of shark SOD gene by cadmium exposure was dependent upon doses and durations: there was a trend toward more increase in higher dose and longer durations of exposure. The hepatic SOD mRNA levels showed also a general agreement with the tissue cadmium concentrations accumulated in immersion exposure. This result may provide useful strategy to develop a fine molecular biomarker at mRNA level for detecting aquatic pollution caused by toxic metals.

Screening of Ecotoxicant Responsive Genes and Expression Analysis of Benzo[a]pyrene-exposed Rockfish (Sebastes schlgeli)

  • Yum, Seung-Shic;Woo, Seon-Ock;Lee, Taek-Kyun
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.114-119
    • /
    • 2006
  • Benzo[a]pyrene is a representative ecotoxicant in marine environment and a model compound of polycyclic aromatic hydrocarbons, which has an ability to bioaccumulate in aquatic organisms. This study aimed to identify molecular biomarkers suitable for assessing environmental pollution using a microarray technique. We examined the effects of benzo[a]pyrene on gene expressions in the rockfish, Sebastes schlegeli. We constructed the subtractive cDNA library with hepatic RNA from benzo[a]pyrene-exposed and non-exposed control fish. From the library 10,000 candidate clones were selected randomly and cDNA microarray was constructed. We determined benzo[a]pyrene-responsive genes using a high-density microarray. Statistical analysis showed that approximately 400 genes are significantly induced or reduced by benzo[a]pyrene treatment ($2\;{\mu}m$). Especially gene expression changes of 4 candidate clones among the up- or down-regulated genes were investigated in 6, 12 and 24 hr BaP-exposed fish groups. Many methods have been developed to monitor marine environmental status, which depend on quantifying the levels of the toxic components in polluted seawater or on ecological accessing, such as species diversity or richness. However, those methods could not provide information on physiological or genetic changes induced by such environmental stresses. Comparing with the conventional methods, these data will propose that benzo[a]pyrene-responsive genes can be useful for biological risk assessment of polycyclic aromatic hydrocarbons on marine organism at molecular level.

FXRα Down-Regulates LXRα Signaling at the CETP Promoter via a Common Element

  • Park, Sung-Soo;Choi, Hojung;Kim, Seung-Jin;Kim, Ok Jin;Chae, Kwon-Seok;Kim, Eungseok
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.409-414
    • /
    • 2008
  • The cholesteryl ester transfer protein (CETP), a key player in cholesterol metabolism, has been shown to promote the transfer of triglycerides from very low density lipoprotein (VLDL) and low density lipoprotein (LDL) to high density lipoprotein (HDL) in exchange for cholesterol ester. Here we demonstrate that farnesoid X receptor ${\alpha}$ ($FXR{\alpha}$; NR1H4) down-regulates CETP expression in HepG2 cells. A $FXR{\alpha}$ ligand, chenodeoxycholic acid (CDCA), suppressed basal mRNA levels of the CETP gene in HepG2 cells in a dose-dependent manner. Using gel shift and chromatin immunoprecipitation (ChIP) assays, we found that $FXR{\alpha}$ could bind to the liver X receptor ${\alpha}$ ( $LXR{\alpha}$; NR1H3) binding site (LXRE; DR4RE) located within the CETP 5' promoter region. $FXR{\alpha}$ suppressed $LXR{\alpha}$-induced DR4RE-luciferase activity and this effect was mediated by a binding competition between $FXR{\alpha}$ and $LXR{\alpha}$ for DR4RE. Furthermore, the addition of CDCA together with a $LXR{\alpha}$ ligand, GW3965, to HepG2 cells was shown to substantially decrease mRNA levels of hepatic CETP gene, which is typically induced by GW3965. Together, our data demonstrate that $FXR{\alpha}$ down-regulates CETP gene expression via binding to the DR4RE sequence within the CETP 5' promoter and this $FXR{\alpha}$ binding is essential for $FXR{\alpha}$ inhibition of $LXR{\alpha}$-induced CETP expression.

Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice

  • Sun, Xufeng;Yamasaki, Masayuki;Katsube, Takuya;Shiwaku, Kuninori
    • Nutrition Research and Practice
    • /
    • 제9권2호
    • /
    • pp.137-143
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Mulberry leaves contain quercetin derivatives, which have the effects of reducing obesity and improving lipid and glucose metabolism in mice with obesity. It is not clear whether or not mulberry leaves can directly affect metabolic disorders, in the presence of obesity, because of the interaction between obesity and metabolic disorders. The aim of the current study was to assess the direct action of quercetin derivatives on metabolic disorders in non-obese conditions in short-term high-fat diet fed mice. MATERIALS/METHODS: C57BL/6N mice were fed a high-fat diet, supplemented with either 0% (control), 1%, or 3% mulberry leaf powder (Mul) or 1% catechin powder for five days. Anthropometric parameters and blood biochemistry were determined, and hepatic gene expression associated with lipid and glucose metabolism was analyzed. RESULTS: Body and white fat weights did not differ among the four groups. Plasma triglycerides, total cholesterol, and free fatty acids in the 1%, 3% Mul and catechin groups did not differ significantly from those of the controls, however, plasma glucose and 8-isoprostane levels were significantly reduced. Liver gene expression of gp91phox, a main component of NADPH oxidase, was significantly down-regulated, and PPAR-${\alpha}$, related to ${\beta}$-oxidation, was significantly up-regulated. FAS and GPAT, involved in lipid metabolism, were significantly down-regulated, and Ehhadh was significantly up-regulated. Glucose-metabolism related genes, L-PK and G6Pase, were significantly down-regulated, while GK was significantly up-regulated in the two Mul groups compared to the control group. CONCLUSIONS: Our results suggest that the Mul quercetin derivatives can directly improve lipid and glucose metabolism by reducing oxidative stress and enhancing ${\beta}$-oxidation. The 1% Mul and 1% catechin groups had similar levels of polyphenol compound intake ($0.4{\times}10^{-5}$ vs $0.4{\times}10^{-5}$ mole/5 days) and exhibited similar effects, but neither showed dose-dependent effects on lipid and glucose metabolism or oxidative stress.

Comparing In Vitro and In Vivo Genomic Profiles Specific to Liver Toxicity Induced by Thioacetamide

  • Kang, Jin-Seok;Jeong, Youn-Kyoung;Shin, Ji-He;Suh, Soo-Kyung;Kim, Joo-Hwan;Lee, Eun-Mi;Kim, Seung-Hee;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • 제15권4호
    • /
    • pp.252-260
    • /
    • 2007
  • As it is needed to assay possible feasibility of extrapolation between in vivo and in vitro systems and to develop a new in vitro method for toxicity testing, we investigated global gene expression from both animal and cell line treated with thioacetamide (TAA) and compared between in vivo and in vitro genomic profiles. For in vivo study, mice were orally treated with TAA and sacrificed at 6 and 24 h. For in vitro study, TAA was administered to a mouse hepatic cell line, BNL CL.2 and sampling was carried out at 6 and 24 h. Hepatotoxicity was assessed by analyzing hepatic enzymes and histopathological examination (in vivo) or lactate dehydrogenase (LDH) assay and morphological examination (in vitro). Global gene expression was assessed using microarray. In high dose TAA-treated group, there was centrilobular necrosis (in vivo) and cellular toxicity with an elevation of LDH (in vitro) at 24 h. Statistical analysis of global gene expression identified that there were similar numbers of altered genes found between in vivo and in vitro at each time points. Pathway analysis identified several common pathways existed between in vivo and in vitro system such as glutathione metabolism, bile acid biosynthesis, nitrogen metabolism, butanoate metabolism for hepatotoxicty caused by TAA. Our results suggest it may be feasible to develop toxicogenomics biomarkers by comparing in vivo and in vitro genomic profiles specific to TAA for application to prediction of liver toxicity.