• Title/Summary/Keyword: Hepatic Enzymes Activities

Search Result 280, Processing Time 0.023 seconds

Effect of Taurine Supplementation on Hepatic Lipid Peroxide Metabolism in Streptozotocin-induced Diabetic Rats

  • You, Jeong-Soon;Chang, Kyung-Ja
    • Journal of Community Nutrition
    • /
    • v.2 no.2
    • /
    • pp.164-169
    • /
    • 2000
  • The purpose of this study was to examine the effect of taurine supplementation time on the activity of the enzymes metabolizing lipid peroxide in the liver of streptozotocin(STZ)-induced diabetic rats, Sprague-Dawley male rats were fed the purified diet for 7 weeks. They were supplemented with or without 1% taurine in drinking water before or after STZ injection or during all experimental procedure. In comparison to diabetic group without taurine, glucose-6-phosphatase(G6Pase) activity was decreased in diabetic group supplemented with taurine before STZ injection, and it was increased in diabetic group supplemented with taurine after STZ injection, but the difference was not significant. Glutathione S-transferase(GST) activity was significantly increased by the injection of STZ. However, the GST activities of diabetic groups exposed to taurine after STZ injection or during all experimental procedure were significantly decreased. Glutathione peroxidase(GPx) activities was significantly decreased by STZ injection. However, only in diabetic group supplemented with taurine before STZ injection, GPx activities was not decreased by the STZ injection. These results suggest that taurine supplementation may change the activities of GSH-related enzymes metabolizing lipid peroxide in the liver of streptozotocin(STZ)-induced diabetic rats and that may be helpful for the prevention of diabetic complication.

  • PDF

Effects of Long-Term Vitamin E and Butylated Hydroxytoluene Supplemented Diets on Murine Intestinal and Hepatic Antioxidant Enzyme Activities

  • Jang, I.S.;Chae, K.R.;Kang, T.S.;Kim, Y.K.;Kim, C.K.;Hwang, J.H.;Hwang, D.Y.;Choi, C.B.;Jung, K.K.;Cho, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.932-938
    • /
    • 1999
  • The present study was designed to determine long-term feeding effects of vitamin E and BHT (butylated hydroxytoluene) on serum biochemical profiles, organ weight, and intestinal and hepatic antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and glutathione-S-transferase (GST) in ICR mice. Four wk old ICR mice (n=8 per group) were fed the diets supplemented with vitamin E (I ; 0.03% and II ; 0.3%) and BHT (I ; 0.05% and II ; 0.5%) for 12 months. Feeding the diets containing vitamin E and BHT had no effects on growth and serum biochemical profiles. However, feeding the diets supplemented with 0.5% BHT for 12 months significantly increased liver weight of the mice. In the small intestine, there were no effects of vitamin E or BHT on SOD and GSH-PX activities in the mucosa. However, the activity of intestinal GST of the mice that received 0.5% BHT was almost twice as high as that of control mice. In the liver, the activity of SOD was not affected by feeding antioxidants for 12 months, whereas GSH-PX activity was significantly increased in mice that received the diets containing BHT (0.05%, 0.5%) and vitamin E (0.03%, 0.3%). In addition, supplementation of 0.5% BHT markedly enhanced hepatic GST activity compared with other groups. Enhanced activity of GSH-PX in response to feeding vitamin E or BHT might aid hepatic enzymes to eliminate active oxygen in organs from mice. However, we could not exclude the possibility of increased lipid peroxidation by high dosage of BHT supplementation. More detailed study is necessary for assessment of preventive or toxicological effects of high dosage of BHT supplementation.

(-) Epigallocatechin gallate restores ethanol-induced alterations in hepatic detoxification system and prevents apoptosis

  • Anuradha, Carani V;Kaviarasan, Subramanian
    • Advances in Traditional Medicine
    • /
    • v.7 no.3
    • /
    • pp.311-320
    • /
    • 2007
  • The present study was designed to estimate the protective effect of (-) epigallocatechin gallate (EGCG) on ethanol-induced liver injury in rats. Chronic ethanol administration (6 g/kg/day ${\times}$ 60 days) caused liver damage that was manifested by the elevation of markers of liver dysfunction - aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, bilirubin and ${\gamma}$-glutamyl transferase in plasma and reduction in liver glycogen. The activities of alcohol metabolizing enzymes such as alcohol dehydrogenase and aldehyde dehydrogenase were found to be altered in alcohol-treated group. Ethanol administration resulted in the induction of cytochrome p450 and cytochrome-$b_{5}$ activities and reduction of cytochrome-c reductase and glutathione-S-transferase, a phase II drug metabolizing enzyme. Further, ethanol reduced the viability of isolated hepatocytes (ex vivo) as assessed by trypan blue exclusion test and induced hepatocyte apoptosis as assessed by propidium iodide staining. Treatment of alcoholic rats with EGCG restored the levels of markers of liver injury and mitigated the alterations in alcohol metabolizing and drug metabolizing enzymes and cyt-c-reductase. Increased hepatocyte viability and reduced apoptotic nuclei were observed in alcohol + EGCG-treated rats. These findings suggest that EGCG acts as a hepatoprotective agent against alcoholic liver injury.

Metabolic Activity of Desalted Ground Seawater of Jeju in Rat Muscle and Human Liver Cells

  • Kim, Bo-Youn;Lee, Young-Ki;Park, Deok-Bae
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • Ground seawater in the east area of the volcanic Jeju Island contains abundant minerals. We investigated the metabolic activity of electrodialyzed, desalted ground seawater (EDSW) from Jeju in both cultured cells and animals. The addition of EDSW to the culture medium (up to 20%, v/v) reduced the leakage of lactate dehydrogenase and increased MTT activity in CHO-IR cells. EDSW (10%) promoted insulin-induced glucose consumption in L6 muscle cells as well as the activities of the liver ethanol-metabolizing enzymes, alcohol dehydrogenase and aldehyde dehydrogenase. Moreover, EDSW suppressed palmitate-induced intracellular fat accumulation in human hepatoma $HepG_2$ cells. Activities of AMP-stimulated protein kinase and acetyl CoA carboxylase, enzymes that modulate fat metabolism, were altered by EDSW in $HepG_2$ cells toward the suppression of intracellular lipid accumulation. EDSW also suppressed hepatic fat accumulation induced by a high-fat diet in mice. Taken together, EDSW showed beneficial metabolic effects, including the enhancement of ethanol metabolism and insulin-induced glucose consumption, and the suppression of intrahepatic fat accumulation.

Radioprotective Effect of Ginseng Components on Antioxidant Enzymes, Glutathione and Lipid Peroxidation of Liver in ${\gamma}$-Irradiated Mice (홍삼 분획물이 감마선을 비사한 생쥐 간에서 항산화물질과 지질과산화에 미치는 방사선 보호효과)

  • 김동윤;장재철
    • Journal of Ginseng Research
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • In the present study, to determine whether the antioxidative components of Korean red ginseng protect against radiation damage and the possible relationship among the radioprotective effects and antioxidant actions, the effects of total saponin (200 mg/kg, ip) and lipophilic fraction (200 mg/kg, oral) preferment of mice on the survival ratio, major antioxidant enzymes (SOD, catalase and glutathione peroxidase) activities, glutathione levels and lipid peroxidation in the liver were exiled for 2 weeks after whole ${\gamma}$-body ${\gamma}$-irradiation (6.5 Gy). The 30-day survival ratio increased from 10% to 57% and 40% for mice treated with total saponin and lipophilic fraction, respectively. On day 14 after ${\gamma}$-irradiation, the ginseng total saponin pretreatment produced a slight increase of antioxidant enzymes activities and significantly Increased reduced glutathione (GSH) contents (p<0.05) in the liver compared with non-treated group. Pretreatment with ginseng total saponin significantly deceased GSSG/total GSH ratio (p<0.05) without change of GSSG in the liver and inhibited the radiation-induced incense in the hepatic malondialdehyde levels. (p<0.05) In these results, GSH plays an important role in the liver in several detoxifications and the reduction of lipid peroxides. Thus, it appears that total saponin of red ginseng exerts its radioprotective effect by accelerating the production of endogenous antioxidants, such as glutathione from radiation induced damages and thereby oxygen free radicals.

  • PDF

Effect of Glutathione on Aldehyde Dehydrogenase Activity (알데히드 탈수소 효소 활성에 미치는 글루타치온의 영향)

  • 이은실;문전옥
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2001
  • It is known that alcoholics have significantly lower mitochondrial aldehyde dehydrogenase (ALDH)s'activity than do normal subjects or nonalcoholics with liver disease. However, there are only few reports that explain the reasons behind this reduction of ALDHs'activities. In this study, ALDH activity is inhibited by acetaldehyde, a substrate for ALDH However, the addition of glutathione (GSH) protected ALDH activities against the inhibitory effects of acetaldehyde in vitro. Furthermore, when GSH depletion is induced using diethyl maleate (DEM) in rats by 24% in cytosol and 43% in mitochondria, ALDH activities were also depressed by 31% and 63%, respectively compared to non-treated rats without significant reductions in other hepatic enzymes. These results suggest that ALDHs'activities are closely related to the concentration of acetaldehyde and/or cellular GSH contents . Therefore in alcoholic liver disease, increased productions of acetaldehyde and decreased contents of mitochondrial GSH may involved in the depression of ALDHs'activities.

  • PDF

Hepatotoxic Effects of 1-Furan-2-yl-3-pyridin-2-yl-propenone, a New Anti-Inflammatory Agent, in Mice

  • Jeon, Tae-Won;Kim, Chun-Hwa;Lee, Sang-Kyu;Shin, Sil;Choi, Jae-Ho;Kang, Won-Ku;Kim, Sang-Hyun;Kang, Mi-Jeong;Lee, Eung-Seok;Jeong, Tae-Cheon
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.318-324
    • /
    • 2009
  • 1-Furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) has recently been synthesized and characterized to have an anti-inflammatory activity through the inhibition of the production of nitric oxide. In the present study, adverse effects of FPP-3 on hepatic functions were determined in female BALB/c mice. When mice were administered with FPP-3 at 125, 250 or 500 mg/kg for 7 consecutive days orally, FPP-3 significantly increased absolute and relative weights of liver with a dose-dependent manner. In addition, FPP-3 administration dramatically increased the hepatotoxicity parameters in serum at 500 mg/kg, in association of hepatic necrosis. FPP-3 significantly induced several phase I enzyme activities. To elucidate the possible mechanism(s) involved in FPP-3 induced hepatotoxicity, we investigated the hepatic activities of free radical generating and scavenging enzymes and the level of hepatic lipid peroxidation. FPP-3 treatment significantly elevated the hepatic lipid peroxidation, measured as the thiobarbituric acid-reactive substance, and the activity of superoxide dismutase. Taken together, the present data indicated that reactive oxygen species might be involved in FPP-3-induced hepatotoxicity.

Antifibrotic Activity of LCC, a Cerebroside of Lycium chinense Fruit, in Bile Duct-Ligated Rats

  • Kim, Sun-Yeou;Kim, Hong-Pyo;Yang, Hye-Kyung;Lee, Mi-Na;Ryu, Hyo-Jeong;Jang, Young-Pyo;Sung, Sang-Hyun;Kim, Young-Choong
    • Natural Product Sciences
    • /
    • v.15 no.2
    • /
    • pp.101-105
    • /
    • 2009
  • We previously reported that a novel cerebroside, LCC, isolated from the fruits of Lycium chinense (Solanaceae), significantly exerted hepatoprotective activity against both the carbon tetrachloride-induced and galactosamine-induced toxicities in primary cultures of rat hepatocytes. In the present study, we further attempted to determine the effect of LCC on hepatic fibrosis in animal model. Hepatic fibrosis was induced in rats by bile duct ligation/scission (BDL) for a period of 5 weeks. Treatment of BDL rats with LCC significantly reduced collagen deposition and the activities of serum alkaline phosphatase and ${\gamma}$-glutamyl transpeptidase. In addition, the LCC treatment of BDL rats significantly preserved the decreased hepatic glutathione as well as the activities of glutathione reductase and catalase in BDL rats. From the results, it can be speculated that LCC might exert antifibrotic activity in rats with BDL, in part, through the preservation of antioxidant enzymes and hepatic glutathione.

Ethyl Acetate Fraction of Amomum villosum var. xanthioides Attenuates Hepatic Endoplasmic Reticulum Stress-Induced Non-Alcoholic Steatohepatitis via Enhancement of Antioxidant Activities (Amomum villosum var. xanthioides의 에틸아세테이트 분획물이 항산화 활성을 통한 간 소포체 스트레스 유발 비알코올성 지방간 저해)

  • Eun Jung Ahn;Su Young Shin;Seung Young Lee;Chang-Min Lee;Kyung-Min Choi;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.60-60
    • /
    • 2021
  • Non-alcoholic fatty liver disease (NAFLD), especially including non-alcoholic steatohepatitis (NASH) is one of the common diseases with 25% of prevalence globally, but there is no thera-peutic access available. Amomum villosum var. xanthioides (Wall. ex Baker) T.L.Wu & S.J.Chen (AX), which is a medicinal herb and traditionally used for treating digestive tract disorders in Asia countries. We aimed to examine pharmacological effects of ethyl acetate fraction of AX (AXEF) against ER stress-induced NASH mice model using C57/BL6J male mice by tunicamycin (TM, 2 mg/kg) injection focusing on the oxidative stress. Mice were orally administrated AXEF (12.5, 25, or 50 mg/kg), silymarin (50 mg/kg) or distilled water daily for 5 days, and outcomes for fatty liver, inflammation, and oxidative stress were measured in serum or liver tissue levels. AXEF drastically attenuated hepatic ER stress-induced NASH which were evidenced by decreases of li-pid droplet accumulations, serum liver enzymes, hepatic inflammations, and cell death signals in the hepatic tissue or serum levels. Interestingly, AXEF showed potent antioxidant effects by quenching of reactive oxidative stress and its final product of lipid peroxide in the hepatic tissue, specifically increase of metallothionein (MT). To confirm underlying actions of AXEF, we ob-served that AXEF increase MT1gene promoter activities in the physiological levels. Collectively, AXEF showed antioxidant properties on TM-induced ER stress of NASH by enhancement of MTs.

  • PDF

Inhibitory Effect of Coprinus comatus Ethanol Extract on the Liver damage in Benzo(a)pyrene-treated Mice (먹물버섯 에탄올추출물이 Benzo(a) pyrene 투여에 의한 마우스의 간 손상에 미치는 영향)

  • 이갑랑;이병훈;김현정;장종선;배준태;박선희;이승언;김옥미;이별나
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1364-1368
    • /
    • 1999
  • This study was carried out to investigate the inhibiton effects of Coprinus comatus ethanol extract of edible mushroom on liver damage in benzo(a)pyrene (B(a)P) treated mice. The activities of serum aminotransferase, cytochrome P 450 and hepatic content of lipid peroxide after B(a)P treatment were increased than those of control, but those levels were significantly decreased by the treatment of Coprinus comatus ethanol extract. Whereas, the hepatic glutathione content and glutathione S transferase activity were decreased by B(a)P treatment than those of control, but those were increased by the treatment of Coprinus comatus ethanol extract. Also the activities of superoxide dismutase, catalase and glutathione peroxidase after B(a)P treatment were markedly increased than those of control, but those levels were decreased by the treatment of Coprinus comatus ethanol extract. These results suggest that Coprinus comatus ethanol extract have a protective effect on liver damage by benzo(a)pyrene through the mechanisms of decreasing lipid peroxide and activities of free radical generating enzymes.

  • PDF