Browse > Article
http://dx.doi.org/10.4062/biomolther.2009.17.3.318

Hepatotoxic Effects of 1-Furan-2-yl-3-pyridin-2-yl-propenone, a New Anti-Inflammatory Agent, in Mice  

Jeon, Tae-Won (College of Pharmacy, Yeungnam University)
Kim, Chun-Hwa (College of Pharmacy, Yeungnam University)
Lee, Sang-Kyu (College of Pharmacy, Yeungnam University)
Shin, Sil (College of Pharmacy, Yeungnam University)
Choi, Jae-Ho (College of Pharmacy, Yeungnam University)
Kang, Won-Ku (College of Pharmacy, Catholic University of Daegu)
Kim, Sang-Hyun (College of Medicine, Kyungpook National University)
Kang, Mi-Jeong (College of Pharmacy, Yeungnam University)
Lee, Eung-Seok (College of Pharmacy, Yeungnam University)
Jeong, Tae-Cheon (College of Pharmacy, Yeungnam University)
Publication Information
Biomolecules & Therapeutics / v.17, no.3, 2009 , pp. 318-324 More about this Journal
Abstract
1-Furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) has recently been synthesized and characterized to have an anti-inflammatory activity through the inhibition of the production of nitric oxide. In the present study, adverse effects of FPP-3 on hepatic functions were determined in female BALB/c mice. When mice were administered with FPP-3 at 125, 250 or 500 mg/kg for 7 consecutive days orally, FPP-3 significantly increased absolute and relative weights of liver with a dose-dependent manner. In addition, FPP-3 administration dramatically increased the hepatotoxicity parameters in serum at 500 mg/kg, in association of hepatic necrosis. FPP-3 significantly induced several phase I enzyme activities. To elucidate the possible mechanism(s) involved in FPP-3 induced hepatotoxicity, we investigated the hepatic activities of free radical generating and scavenging enzymes and the level of hepatic lipid peroxidation. FPP-3 treatment significantly elevated the hepatic lipid peroxidation, measured as the thiobarbituric acid-reactive substance, and the activity of superoxide dismutase. Taken together, the present data indicated that reactive oxygen species might be involved in FPP-3-induced hepatotoxicity.
Keywords
FPP-3; Hepatotoxicity; Lipid peroxidation; In vivo;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Gonzalez, F. J. (2005). Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat. Res. 569, 101-110   DOI   ScienceOn
2 Hayes, J. D. and McLellan, L. I. (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 31, 273-300   DOI   ScienceOn
3 Koop, D. R. (1986). Hydroxylation or p-nitrophenol by rabbit ethanol inducible cytochrome P-450 isozyme 3A. Mol. Pharmacol. 29, 399-404
4 Kyle, M. E., Miccadei, S., Nakae, D. and Farber, J. L. (1987). Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen. Biochem. Biophys. Res. Commun. 149, 889-896   DOI   ScienceOn
5 Aebi, H. (1984). Catalase in vitro. Methods Enzymol. 105, 121-126   DOI
6 Blank, J. A., Tucker, A. N., Sweatlock, J., Gasiewicz, T. A. and Luster, M. I. (1987). ${\alpha}$-Naphthoflavone antagonism of 2,3,7,8-tetrachlorodibenzo-p-dioxin induced murine ethoxyresorufin O-deethylase activity and immunosuppression. Mol. Pharmacol. 32, 168-172
7 Lee, E. S., Park, B. C., Paek, S. H., Lee, Y. S., Basnet, A., Jin, D. Q., Choi, H. G., Yong, C. S. and Kim, J. A. (2006). Potent analgesic and anti-inflammatory activities of 1-furan-2-yl-3-pyridin-2-yl-propenone with gastric ulcer sparing effect. Biol. Pharm. Bull. 29, 361-364.   DOI   ScienceOn
8 Larrea, E., Garcia, N., Qian, C., Civeira, M. P. and Prieto, J. (1994). Enhanced expression of TNF${\alpha}$ in patients with primary biliary cirrhosis. Int. Hepatol. Commun. 2, 6-13   DOI
9 Lamba, J. K., Lin, Y. S., Schuetz, E. G. and Thummel, K. E. (2002). Genetic contribution to variable human CYP3Amediated metabolism. Adv. Drug Deliv. Rev. 54, 1271-1294   DOI   ScienceOn
10 Lee, E. S., Ju, H. K., Moon, T. C., Lee, E., Jahng, Y., Lee, S. H., Son, J. K., Baek, S. H. and Chang, H. W. (2004). Inhibition of nitric oxide and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) production by propenone compound through blockade of nuclear factor (NF)-$_KB$ activation in cultured murine macrophages. Biol. Pharm. Bull. 27, 617-620   DOI   ScienceOn
11 Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
12 Lee, S. K., Lee, D. J., Jeong, H., Bista, S. R., Kang, M. J., Lee, E. S., Son, J. K., Nam, D. H., Chang, H. W., Lee, S. H., Jahng, Y. and Jeong, T. C. (2007). Hepatotoxic and immunotoxic effects produced by 1,3-dibromopropane and its conjugation with glutathione in female BALB/c mice. J. Toxicol. Environ. Health A. 70, 1381-1390   DOI   ScienceOn
13 Luster, M. I., Simeonova, P. P., Gallucci, R. and Matheson, J. (1999). Tumor necrosis factor ${\alpha}$ and toxicology. Crit. Rev. Toxicol. 29, 491-511   DOI   ScienceOn
14 Marklund, S. and Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474   DOI   ScienceOn
15 Ohkawa, H., Ohishi, N. and Yagi, K. (1979). Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358   DOI   ScienceOn
16 Luster, M. I., Portier, C., Pait, D. G., White, K. L. Jr., Gennings, C., Munson, A. E. and Rosenthal, G. J. (1992). Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. Fund. Appl. Toxicol. 18, 200-210   DOI   ScienceOn
17 Nash, T. (1953). The colorimetrical estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55, 416-421   DOI
18 Nicholls, D. G. and Budd, S. L. (2000). Mitochondria and neuronal survival. Physiol. Rev. 80, 315-360   DOI
19 Roy, A., Soni, G. R., Kolhapure, R. M., Banerjee, K. and Patki, P. S. (1992). Induction of tumour necrosis factor ${\alpha}$ in experimental animals treated with hepatotoxicants. Indian J. Exp. Biol. 30, 696-700.
20 Maser, E. (1995). Xenobiotic carbonyl reduction and physiological steroid oxidoreduction. The pluripotency of several hydroxysteroid dehydrogenases. Biochem. Pharmacol. 49, 421-440   DOI   ScienceOn
21 Shanmugam, S., Lee, E. S., Jeong, T. C., Yong, C. S., Choi, H. G., Woo, J. S. and Yoo, B. K. (2008). The effects of 1-furan-2-yl-3-puridine-2-yl-propenone on pharmacokinetic parameters of warfarin. Arch. Pharm. Res. 30, 898-904   DOI   ScienceOn
22 Yu, B. P. (1994). Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74, 139-162   DOI
23 Simeonova, P. P., Gallucci, R. M., Hulderman, T., Wilson, R., Kommineni, C., Rao, M. and Luster, M. I. (2001). The role of tumor necrosis factor-${\alpha}$ in liver toxicity, inflammation, and fibrosis induced by carbon tetrachloride. Toxicol. Appl. Pharmacol. 177, 112-120   DOI   ScienceOn
24 Szotakova, B., Baliharova, V., Lamka, J., No.inova, E., Wsol, V., Velik, J., Machala, M., Ne.a, J., Sou.ek, P., .usova, S. and Skalova, L. (2004). Comparison of in vitro activities of biotransformation enzymes in pig, cattle, goat and sheep. Res. Vet. Sci. 76, 43-51   DOI   ScienceOn
25 Wong, G. H., Elwell, J. H., Oberley, L. W. and Goeddel, D. V. (1989). Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58, 923-931   DOI   ScienceOn
26 Zhao, J., Chatterjee, M. L., Sharma, Y. and Agarwal, R. (2000). Inhibitory effect of a flavonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory responses in SENCAR mouse skin. Carcinogenesis. 21, 811-816   DOI   ScienceOn
27 Thapa, D., Lee, J. S., Park, M. A., Cho, M. Y., Park, Y. J., Choi, H. G., Jeong, T. C. and Kim, J. A. (2009). Inhibitory effects of clotrimazole on TNF-a-induced adhesion molecule expression and angiogenesis. Arch. Pharm. Res. 32, 593-603   DOI   ScienceOn
28 Carlberg, I. and Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 250, 5475-5480
29 Hwang, Y. P., Han, E. H., Choi, J. H., Kim, H. G., Lee, K. J., Jeong, T. C., Lee, E. S. and Jeong, H. G. (2008). Chemopreventive effects of furan-2-yl-3-pyridin-2-yl-propenone against 7,12-dimethylbenz[a]anthracene-inducible genotoxicity. Toxicol. Appl. Pharmacol. 228, 343-350   DOI   ScienceOn
30 Shanmugam, S., Lee, E. S., Lee, S. K., Jeon, T. W., Yong, C. S. and Yoo, B. K. (2006). The effect of 1-furan-2-yl-3-puridine- 2-yl-propenone on pharmacokinetic parameters of theophylline. Biol. Pharm. Bull. 29, 1282-1285   DOI   ScienceOn
31 Paglia, D. E. and Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158-169
32 Jahng, Y., Zhao, L. X., Moon, Y. S., Basnet, A., Kim, E. K., Chang, H. W., Ju, H. K., Jeong, T. C. and Lee, E. S. (2004). Simple aromatic compounds containing propenone moiety show considerable dual COX/5-LOX inhibitory activities. Bioorg. Med. Chem. Lett. 14, 2559-2562   DOI   ScienceOn
33 Lee, S. K., Kim, J. H., Seo, Y. M., Kim, C. H., Kang, M. J., Jeong, H. G., Lee, E. S. and Jeong, T. C. (2008). In vitro characterization of the enzymes involved in the metabolism of 1-furan-2-yl-3-pyridin-2-yl-propenone, an anti-inflammatory propenone compound. Arch. Pharm. Res. 31, 764-770   DOI   ScienceOn
34 Lubet, R. A., Meyer, R. T., Cameron, J. W., Nims, R. W., Burke, M. D., Wolff, J. and Guengerich, F. P. (1985). Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome(s) P-450 by phenobarbital and other xenobiotics in the rat. Arch. Biochem. Biophys. 238, 43-48   DOI   ScienceOn