• Title/Summary/Keyword: HepG2 hepatocytes

Search Result 53, Processing Time 0.033 seconds

In vitro hepatocyte inflammation by chaparral extract (Chaparral 추출물에 의한 in vitro 간세포 염증반응)

  • Kim, Ilrang
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.344-347
    • /
    • 2021
  • In this study, the hepatotoxic mechanism of chaparral (Larrea tridentata) was investigated through in vitro experiments that measured cell death, inflammatory cytokine secretion, and intracellular fat accumulation by treating HepG2 hepatocytes with a 70% ethanol extract of chaparral at concentrations ranging from 0.001 to 100 ㎍/mL. Cell death was observed after treatment with chaparral extract at concentrations of 1-100 ㎍/mL (p<0.05). The secretion of the inflammatory cytokines, interleukin-8 and macrophage-colony stimulating factor, and fat accumulation were significantly increased even at a concentration of 0.1 ㎍/mL, which was 10 times lower than the observed concentration resulting in cell death (p<0.05). Hepatitis caused by inflammatory cytokine secretion and fat accumulation was shown to be a form of hepatotoxicity induced by chaparral extract. Hepatitis was expressed at a concentration lower than that causing serious toxicity such as cell death, suggesting that hepatotoxicity, including hepatitis, may be caused by ingestion of low concentrations of chaparral.

Glycoantigen Biosyntheses of Human Hepatoma and Colon Cancer Cells are Dependent on Different N-Acetylglucosaminyltransferase-III and -V Activities

  • Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.891-900
    • /
    • 2004
  • UDP-N-Acetylglucosamine(GlcNAc):$\beta$1,4-D-mannoside$\beta$-l ,4N-acetylglucosaminyltransferase-III (GnT-III) and UDP-N-GlcNAc:$\alpha$-6-D-mannosid$\beta$-1,6N-acetylglucosaminyltransferase-V(GnT - V) activities were determined in human hepatoma cell lines and metastatic colon cancer cells, and their activities were compared with those of normal liver cells and fetal hepatocytes. GnT-III activities were higher than those of GnT-V in hepatic carcinoma cells. When the two enzyme activities were assayed in highly metastatic colon cancer cells, GnT - V activities were much higher than those of GnT-III. When GlcN, GlcN-biant-PA and UDP-GlcNAc were used as substrates, the enzymes displayed different kinetic properties between hepatic and colon cancer cells, depending on their metastatic potentials. Normal cells of two origins had characteristically very low levels of GnT-III and -V activities, whereas hepatoma and colon cancer cells contained high levels of activities. These data were supported by RT-PCR and Northern blot analyses, showing that the expression of GnT-III and -V mRNAs were increased in proportion to the enzymatic activities. The increased GnT-III, md -V activities were also correlated with increased glycosylation of the cellular glycoproteins in hepatoma and colon cancer cells, as examined by lectin blotting analysis by using wheat germ glutinin (WGA), erythroagglutinating phytohemagglutinin (E-PHA), leukoagglutinating phytohemagglutinin (L-PHA), and concanavalin A (Con A). Treatment with retinoic acid, a differentiation agent, resulted in decreases of both GnT-III and -V activities of HepG2 and HepG3 cells. In colon carcinoma cells, however, treatment with retinoic acid resulted in a reduction of GnT-V activity, but not with GnT-III activity. Although the mechanism underlying the induction of these mzymes is unclear, oligosaccharides in many glycoproteins have been observed of cancer cells.

Ameliorative Effects of Cirsium jaonicum, Artemisia annua and Curcuma longa on Non-alcoholic Fatty Liver Disease (엉겅퀴, 울금, 개똥쑥 복합 추출물의 지방간 개선효과)

  • Shin, Jae Young;Kang, Hyun Ju;Cho, Byoung Ok;Park, Ji Hyeon;Che, Denis Nchang;Hao, Suping;Wang, Feng;Sim, Jae Suk;Sim, Dong Jun;Jang, Seon Il
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.3
    • /
    • pp.178-185
    • /
    • 2020
  • In this study, the effect of complex hot water extracts of Cirsium jaonicum, Artemisia annua and Curcuma longa (CAC) on the improvement of non-alcoholic fatty liver disease (NAFLD) was investigated. CAC inhibited fatty acid synthesis and lipid accumulation in HepG2 cells cultured with free fatty acid (FFA). In the NAFLD animal model, CAC extract suppressed the increase in body weight, liver, and epididymis fat weight, and suppressed the increase in hepatocyte fat and blood triglyceride. In addition, by blocking the Nrf2/HO-1 signaling pathway, cells were protected from oxidative stress in hepatocytes. Moreover, CAC inhibited the expression of COX-2, iNOS, TNF-α and IL-17 in hepatocytes. These results suggest the possibility that CAC extract can be applied in the field of health functional foods and pharmaceuticals for improvement and prevention of NAFLD.

Combined Toxic Effects of Polar and Nonpolar Chemicals on Human Hepatocytes (HepG2) Cells by Quantitative Property - Activity Relationship Modeling

  • Kim, Ki-Woong;Won, Yong Lim;Park, Dong Jin;Kim, Young Sun;Jin, Eun Sil;Lee, Sung Kwang
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.337-343
    • /
    • 2016
  • We determined the toxicity of mixtures of ethyl acetate (EA), isopropyl alcohol (IPA), methyl ethyl ketone (MEK), toluene (TOL) and xylene (XYL) with half-maximal effective concentration ($EC_{50}$) values obtained using human hepatocytes cells. According to these data, quantitative property-activity relationships (QPAR) models were successfully proposed to predict the toxicity of mixtures by multiple linear regressions (MLR). The leave-one-out cross validation method was used to find the best subsets of descriptors in the learning methods. Significant differences in physico-chemical properties such as boiling point (BP), specific gravity (SG), Reid vapor pressure (rVP) and flash point (FP) were observed between the single substances and the mixtures. The $EC_{50}$ of the mixture of EA and IPA was significantly lower than that of contained TOL and XYL. The mixture toxicity was related to the mixing ratio of MEK, TOL and XYL (MLR equation $EC_{50}=3.3081-2.5018{\times}TOL-3.2595{\times}XYL-12.6596{\times}MEK{\times}XYL$), as well as to BP, SG, VP and FP (MLR equation $EC_{50}=1.3424+6.2250{\times}FP-7.1198{\times}SG{\times}FP-0.03013{\times}rVP{\times}FP$). These results suggest that QPAR-based models could accurately predict the toxicity of polar and nonpolar mixtures used in rotogravure printing industries.

Galactosylated Chitosan (GC)-graft-Poly(vinyl pyrrolidone) (PVP) as Hepatocyte-Targeting DNA Carrier: In Vitro Transfection

  • Park, In-Kyu;Jiang, Hu-Lin;Cook, Seung-Eun;Cho, Myung-Haing;Kim, Su-Il;Jeong, Hwan-Jeong;Akaike, Toshihiro;Cho , Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1284-1289
    • /
    • 2004
  • Galactosylated chitosan-graft-poly(vinyl pyrrolidone) (GCPVP) was synthesized and characterized for hepatocyte-targeting gene carrier. GCPVP itself as well as GCPVP/DNA complex had negligible cytotoxicity regardless of the concentration of GCPVP and the charge ratio, but GCPVP/DNA complex had slightly cytotoxic effect on HepG2 cells only in the case of the higher charge ratio and 20 mM of $Ca^{2+}$ concentration used. Through the confocal laser scanning microscopy, it is shown that the endocytosis by interaction between galactose ligands of GCPVP and ASGPR of the hepatocytes was the major route of transfection of GCPVP/F-plasmid complexes.

Medium-chain fatty acid enriched-diacylglycerol (MCE-DAG) accelerated cholesterol uptake and synthesis without impact on intracellular cholesterol level in HepG2 (중쇄지방산 강화 디아실글리세롤(MCE-DAG)이 간세포 내 콜레스테롤 흡수 및 합성 기전에 미치는 영향)

  • Kim, Hyun Kyung;Choi, Jong Hun;Kim, Hun Jung;Kim, Wooki;Go, Gwang-woong
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.272-277
    • /
    • 2019
  • The effects of medium-chain enriched diacylglycerol (MCE-DAG) oil on hepatic cholesterol homeostasis were investigated. HepG2 hepatocytes were treated with either 0.5, 1.0, or $1.5{\mu}g/mL$ of MCE-DAG for 48 h. There was no evidence of cytotoxicity by MCE-DAG up to $1.5{\mu}g/mL$. The level of proteins for cholesterol uptake including CLATHRIN and LDL receptor increased by MCE-DAG in a dose-dependent manner (p<0.05). Furthermore, proprotein convertase subtilisin/kexin type 9, an inhibitor of LDLR, was dose-dependently diminished (p<0.05), indicating cholesterol clearance raised. MCE-DAG significantly increased 3-hydroxy-3-methylglutaryl-coenzyme A reductase and acetyl-CoA acetyltransferase2 (p<0.05), required for cholesterol synthesis, and their transcriptional regulator sterol regulatory element-binding protein2 (p<0.05). These findings suggest that given conditions of prolonged sterol fasting in the current study activated both hepatic cholesterol synthesis and clearance by MCE-DAG. However, total intracellular level of cholesterol was not altered by MCE-DAG. Taken together, MCE-DAG has the potential to prevent hypercholesterolemia by increasing hepatic cholesterol uptake without affecting intracellular cholesterol level.

Effects of Garcinia cambogia Extract on the Adipogenic Differentiation and Lipotoxicity (가르시니아 캄보지아 추출물의 지방세포 분화 및 지방 독성에 미치는 영향)

  • Kang, Eun Sil;Ham, Sun Ah;Hwang, Jung Seok;Lee, Chang-Kwon;Seo, Han Geuk
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.411-416
    • /
    • 2013
  • This study aimed to examine the mechanisms underlying the effects of Garcinia cambogia extract on the adipogenic differentiation of 3T3-L1 cells and long-chain saturated fatty acid-induced lipotoxicity of HepG2 cells. 3T3-L1 preadipocytes, mouse embryonic fibroblast-adipose like cell line, were treated with MDI solution (0.5 mM IBMX, 1 ${\mu}M$ dexamethasone, 10 ${\mu}g/mL$ insulin) to generate a cellular model of adipocyte differentiation. Using this cellular model, the anti-obesity effect of Garcinia cambogia extract was evaluated. MDI-induced lipid accumulation and expression of adipogenesis-related genes were detected by Oil red O staining, Nile Red staining, and Western blot analysis. Effects Garcinia cambogia extract on palmitate-induced lipotoxicity was also analyzed by MTT assay, LDH release, and DAPI staining in HepG2 cells. Garcinia cambogia extract significantly suppressed the adipogenic differentiation of preadipocytes and intracellular lipid accumulation in the differentiating adipocytes. Garcinia cambogia extract also markedly inhibited the expression of peroxisome proliferator- activated receptor ${\gamma}2$ ($PPAR{\gamma}2$), CCAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$), and adipocyte protein aP2 (aP2). In addition, Garcinia cambogia extract significantly attenuated palmitate-induced lipotoxicity in HepG2 cells. Palmitateinduced cellular damage and reactive aldehydes were also significantly reduced in the presence of Garcinia cambogia extract. These findings suggest that the Garcinia cambogia extract inhibits the adipogenic differentiation of 3T3-L1 preadipocytes, probably by regulating the expression of multiple genes associated with adipogenesis such as $PPAR{\gamma}2$, $C/EBP{\alpha}$, aP2, and thereby modulating fatty acid-induced lipotoxicity to reduce cellular injury in hepatocytes.

The expression and secretion of vimentin in the progression of non-alcoholic steatohepatitis

  • Lee, Su Jin;Yoo, Jae Do;Choi, Soo Young;Kwon, Oh-Shin
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.457-462
    • /
    • 2014
  • The pathogenesis of non-alcoholic steatohepatitis (NASH) is not fully understood. In the present study, both in vitro and in vivo vimentin expression and secretion in NASH were investigated. The exposure of palmitate and lipopolysaccharide (LPS) to HepG2 cells enhanced caspase-3 activity and vimentin expression, respectively. The combined effects of both treatments on vimentin expression and caspase-3 activation appeared to be synergic. In contrast, blockade of caspase-3 activity by zVADfmk resulted in a significant reduction of cleaved vimentin and secreted vimentin into the culture supernatant. Similarly, lipid accumulation and inflammation occurred in mice fed a methionine-choline-deficient diet; thus, vimentin expression and serum cleaved vimentin levels were increased. However, vimentin was not significantly upregulated, and no cleavage occurred in mice fed a high-fat diet. It was conclusively determined that lipid accumulation in hepatocytes induces apoptosis through a caspase-3 dependent pathway; whereas, LPS stimulates vimentin expression, leading to its cleavage and secretion. Increased vimentin fragment levels indicated the existence of substantial hepatocellular death via an apoptotic mechanism.

Gleditsia Spina Extract Protects Hepatocytes from Oxidative Stress through Nrf2 Activation (皂角刺 추출물의 Nrf2 활성화를 통한 간세포 보호 효과)

  • Kim, Jae Kwang;Park, Sang Mi;Jegal, Kyung Hwan;Kim, Young Woo;Byun, Sung Hui;Kim, Sang Chan;Cho, Il Je
    • The Korea Journal of Herbology
    • /
    • v.30 no.4
    • /
    • pp.57-64
    • /
    • 2015
  • Objectives : Oxidative stress is one of the most causes of hepatocyte injury. Gleditsia spina, the thorns ofGleditsia sinensisLam., has been known for its anti-cancer and anti-inflammatory effects in Korean medicine. The present study investigated hepatoprotective effect of Gleditsia spina water extract (GSE) against oxidative stress induced by arachidonic acid (AA) + iron in HepG2 cells.Methods : To investigate cytoprotective effect of GSE, cells were pretreated with GSE and then subsequently exposed to 10 μM AA for 12 h, followed by 5 μM iron. Cell viability was monitored by MTT assay, and expression of apoptosis-related proteins was examined by immunoblot analysis. To identify responsible molecular mechanisms, reactive oxygen species (ROS) production, GSH contents, and mitochondrial membrane potential were measured. In addition, effect of GSE on nuclear factor erythroid 2-related factor 2 (Nrf2) activation was determined by immunoblot and antioxidant response element (ARE)-driven reporter gene assays.Results : GSE pretreatment prevented AA + iron-mediated cytotoxicity in concentration dependent manner. In addition, ROS production, glutathione depletion, and mitochondrial impairment by AA + iron were significantly inhibited by GSE. Furthermore, GSE promoted translocation of Nrf2 to nucleus, which acts as essential transcription factor for induction of antioxidant genes. Increased nuclear Nrf2 that caused by GSE treatment promoted transcriptional activity of ARE. Finally, GSE up-regulated sestrin-2 which was widely recognized as target gene of Nrf2.Conclusions : This study demonstrates that GSE protects hepatocytes from oxidative stress via activation of Nrf2 signaling pathway.

Water Extract of Rosa laevigata Michx. Protects Hepatocytes from Arachidonic Acid and Iron-mediated Oxidative Stress (아라키돈산과 철 유도성 산화적 스트레스에 대한 금앵자(金櫻子) 열수 추출물의 간세포 보호 효능)

  • Ko, Hae Li;Jegal, Kyung Hwan;Song, Si Yeon;Kim, Nan Ee;Kang, Jiwon;Byun, Sung Hui;Kim, Young Woo;Cho, Il Je;Kim, Sang Chan
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.7-15
    • /
    • 2015
  • Objectives : Rosa laevigata Michx. has been used for the treatment of renal disease in traditional Korean medicine. In this study, we investigated cytoprotective effect of R. laevigata water extract (RLE) against oxidative stress induced by arachidonic acid (AA) + iron.Methods : To evaluate the protective effects of RLE against AA + iron-induced oxidative stress in HepG2 cell, cell viability and changes on apoptosis-related proteins were assessed by MTT and immunoblot analyses. The effects of RLE on reduced glutathione level, production of reactive oxygen species and mitochondrial membrane potential were also monitored. Furthermore, to verify underlying molecular mechanism, NF-E2-related factor 2 (Nrf2) was examined by immunoblot analysis. Additionally, Nrf2 transactivation and its downstream target genes expression were also determined by reporter gene and realtime RT-PCR analyses.Results : RLE pretreatment (30-300 μg/ml) prevented cells from AA + iron-mediated cell death in a concentration dependent manner. In addition, 100 μg/ml RLE inhibited AA + iron-induced glutathione depletion, reactive oxygen species production and mitochondrial dysfunction. RLE accumulated nuclear Nrf2 and also transactivated Nrf2, which was evidenced by antioxidant response element- and glutathione S-transferase A2-driven luciferase activities and mRNA level of glutamate-cysteine ligase catalytic subunit, NAD(P)H:quinone oxidoreductase 1 and sestrin 2. Moreover, protective effect of RLE against AA + iron was abolished in Nrf2 knockout cells.Conclusions : These results indicate that RLE has the ability to protect hepatocyte against oxidative stress through Nrf2 activation.