• Title/Summary/Keyword: HepG-2

Search Result 1,130, Processing Time 0.032 seconds

Protective Effect of Cyanidin-3-glucoside, the Major Component of Rubus fruticosus L. Mutants by Irradiation, on H2O2-induced Oxidative Damage in HepG2 Cells (방사선 돌연변이 블랙베리 주성분 Cyanidin-3-glucoside의 과산화수소 유발 산화적 손상에 대한 세포 보호 효과)

  • Cho, Byoung Ok;So, Yangkang;Lee, Chang Wook;Jin, Chang Hyun;Yook, Hong Sun;Jeong, Il Yun
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • This study was conducted to analyze the protective capacity of cyanidin-3-glucoside (C3G), which is rich in mulberry and blackberry as an anthocyanin pigment. In this study, we found that treatment with C3G significantly reduced ROS production in hydrogen peroxide $(H_2O_2)-treated$ HepG2 cells in a dose-dependent manner. In addition, treatment with C3G significantly increased the cell viability in a dose-dependent manner in $H_2O_2-treated$ HepG2 cells. Moreover, treatment with C3G dose-dependently decreased the release of LDH and activation of caspase-3 in HepG2 cells treated with $H_2O_2$. Furthermore, the DNA damage in $H_2O_2-treated$ HepG2 cells was decreased by C3G treatment when compared with the control group in a dose-dependent manner. Additionally, treatment with C3G recovered the activity of antioxidant enzymes such as superoxide dismutase and catalase in $H_2O_2-treated$ HepG2 cells. To summarize, these results suggest that C3G protects cells from $H_2O_2-induced$ oxidative damage by activating antioxidant enzymes.

Selective Cytotoxic Effects of Doenjang (Korean Soybean Paste) Fermented with Bacillus Strains on Human Liver Cell Lines

  • Choi, Myeong-Rak;Lim, Hyun-Soo;Chung, Yoon-Ju;Yoo, Eun-Jeong;Kim, Jong-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.504-508
    • /
    • 1999
  • This report compares the selective cytotoxic effects of Doenjang fermented by various Bacillus strains (Bacillus sp. SS9, SSA3, and PM3) on human liver cell lines with that of conventional Doenjang (DTY, DTG, and DTK) and commercial Doenjang (DCM, DCD, and DCS). To investigate selective cytotoxic effects of Doenjang extracts, the cell density of HepG2 (Hepatocellular carcinoma) and CCL-13 (cells derived from human normal liver) was estimated after addition of the extracts by using a viable cell counting method. The maximum selectivity ratio ($IC_{50}$value against CCL-13/$IC_{50}$ value aganist HepG2) was observed by PM3 (extracts of Doenjang fermented with Bacillus sp. PM3). As for morphological changes shown by the addition of PM3 into HepG2 and CCL-13 cultures, HepG2 was significantly disrupted, however, CCL-13 was not affected. Also, the growth rate of HepG2 was decreased significantly by the addition of PM3. Consequently, PM3 showed a more detrimental effect on HepG2 than that on CCL-13.

  • PDF

The Effects of Injinchunggan-tang(Yinchenqinggan-tang) on Expression of Angiogenic Factors in HepG2 Cells (인진청간탕(茵蔯淸肝湯)이 인체 간암세포의 혈관생성인자 발현에 미치는 영향)

  • Kim, Chul-Woo;Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.138-148
    • /
    • 2006
  • Objectives: This study was designed to investigate the effects of Injinchunggan-tang(Yinchenqinggan-tang) on expression of angiogenic factors in HepG2 cells. Materials and Methods : The mRNA expression levels and protein secretion levels of angiogenic factors were measured using quantitative RT-PCR, Western blot and ELISA assay respectively in Injinchunggan-tang-treated and untreated HepG2 cells. Results : Injinchunggan-tang(Yinchenqinggan-tang) reduced mRNA expression levels and protein secretion levels of angiogenic factors, especially VEGF, bFGF and $TGF{\beta}1$ in HepG2 cells. Conclusion: Results indicate that Injinchunggan-tang (Yinchenqinggan-tang) inhibits expression of angiogenic factors in HepG2 cells. Further, results suggest that Injinchunggan-tang (Yinchenqinggan-tang) inhibits angiogenic effects in HCC.

  • PDF

A Probing of Inhibition Effect on Specific Interaction Between Glucose Ligand Carrying Polymer and HepG2 Cells

  • Park, Keun-Hong;Park, Sang-Hyug;Lee, Hyun-Jung;Min, Byoung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.450-455
    • /
    • 2004
  • A reducing glucose-carrying polymer, called poly [3-O-(4'-vinylbenzyl)-D-glucose](PVG), was interacted with HepG2 cells including a type-l glucose transporter (GLUT-1) on the cell membrane. The cooperative interaction between a number of GLUT-1s and a number of reducing 3-O-methyl-D-glucose moieties on the PVG polymer chain was found to be responsible for the increase in the interaction with HepG2 cells. The affinity between the cells and the PVG was studied using RITC-labeled glycopolymers. The specific interaction between the GLUT-1 on HepG2 cells and the PVG polymer carrying reducing glucose moieties was suppressed by the inhibitors, phloretin, phloridzin, and cytochalasin B. Direct observation by confocal laser microscopy with the use of RITC-labeled PVG and pretreatment of HepG2 cells with the inhibitors demonstrated that the cells interacted with the soluble form of the PVG polymer via GLUT-1, while fluorescence labeling of the cell surface was prevented after pretreatment with the inhibitors of GLUT-1.

Anti-proliferative Effect of Coptis Chinensis Extract in Hep G2 Cells

  • Kim, Jun-Lae;Oh, Se-Mi;Shin, Jang-Woo;Son, Jin-Young;Cho, Jung-Hyo;Lee, Yeon-Weol;Son, Chang-Gue;Cho, Chong-Kwan;Yoo, Hwa-Seung
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.48-56
    • /
    • 2006
  • Objectives : This study is aimed to elucidate anti-hepatoma activity of Coptis Chinensis Extract (CCE) and evaluate its effect on proliferation of human hepatoma Hep G2 cells. Methods : To identify CCE and control the quality, we performed fingerprinting by high-performance thin layer chromatography (HPTLC). To investigate effects of CCE on anti-hepatoma activity, we measured cytotoxicity against Hep G2 cells compared with treatment of paclitaxel and 5-fluorouracil (5-FU). To examine the mechanism of inhibitory effect of CCE on Hep G2 cell proliferation, cell cycle distribution was evaluated using fluorescent activated cell sorter (FACS) Result : CCE showed a significant effect that arrests Hep G2 cells at the G2/M phase of the cell cycle. CCE combined with paclitaxel inhibited synergistically cell growth of Hep G2 cells. Conclusion : CCE may present anticancer effects through inhibition of hepatocellular carcinoma (HCC) cell proliferation via G2/M arrest, and may be a useful anticancer agent for HCC.

  • PDF

The Combined Effects of n-BuOH Fraction of Ulmi Cortex and Anticancer Drugs on Cancer Cell Lines (암세포주에 대한 유근피 n-BuOH 분획과 항암제의 병용효과)

  • Eun, Jae-Soon;Song, Won-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.2
    • /
    • pp.144-152
    • /
    • 1994
  • The combined effects of Ulmi Cortex and some anti-cancer drugs on the proliferation of HeLa cells, Hep G2 cells and S 180 cells were estimated by MTT calorimetric assay. The n-BuOH fraction(UBF) of Ulmi Cortex inhibited the proliferation of HeLa cell at $10^{-3}\;g/ml$, Hep G2 cell at $10^{-5}\;g/ml$ and S 180 cell at $10^{-3}\;g/ml$. The inhibitory effects of mitomycin C(MMC), cisplatin(CPT) and 5-fluorouracil (5-FU), respectively, on Hep G2 cell was increased by the UBF. The UBF did not influence the proliferation of Balb/c 3T3 cells at concentrations of $10^{-6}$ to $10^{-4}\;g/ml$, but increased the proliferation of T cells at concentrations of $10^{-5}$ to $10^{-4}\;g/ml$. The UBF did not influence the number of leukocyte, and on the thymus weight of mice. The UBF increased the number of total-peritoreal cells of mice. In conclusion, the results suggest that the UBF have anti-cancer activity without the side effect, such as leukopenia and immunosuppresion, and increase the inhibitory activity of the anti-cancer drugs on Hep G2 cells.

  • PDF

Cytotoxicity Assessments of Portulaca oleracea and Petroselinum sativum Seed Extracts on Human Hepatocellular Carcinoma Cells (HepG2)

  • Farshori, Nida Nayyar;Al-Sheddi, Ebtesam Saad;Al-Oqail, Mai Mohammad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6633-6638
    • /
    • 2014
  • The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with $5-500{\mu}g/ml$ of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and $500{\mu}g/ml$ of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and $500{\mu}g/ml$ of PO, respectively by NRU assay. PS exposed HepG2 cells with $100{\mu}g/ml$ and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and $500{\mu}g/ml$ of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with $50{\mu}g/ml$ and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.

Effect of the Ethanol Extract of Vitis labrusca Root on Apoptosis in Hep G2 Cells (포도근 에탄올 추출물이 Hep G2 세포의 자연사에 미치는 효과)

  • Lee, Dong-Kyo;Lee, Kang-Pa;Kim, Hyuck;Choi, Byung-Jin;Chang, Hae-Ryong;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.377-384
    • /
    • 2008
  • The root of Vitis labrusca, is used as a source of health promoting drug in Korean traditional medicine. It has been reported that root of Vitis labrusca has antioxidant, anti lipid peroxidation and anti-reactive nitrogen species (RNS) activities. The aim of this study was to elucidate the molecular changes of apoptotic signaling pathways in phorbol 12-myristate 13 acetate (PMA)-induced human hepatocellular carcinoma cell line (Hep G2). The root of Vitis labrusca, ethanol extract (RVLEE) was tested for cell viability on Hep G2 cell using the MTT assay. RVLEE exhibited weak cytotoxic activity. However, treatment of Hep G2 cells with RVLEE suppressed PMA-induced cell proliferation. Also, dramatic changes of cell death signals in cellular molecules such as Chk2/Cds1, CIDE-B, CLIMP-63, Bax, Bcl-xL, C-myc, Bcl-2, Bric-5, NIP-3, TRAF2 and BAR but not CIDE-B and DR4. Futhermore, our results showed that the treatment of Hep G2 cells with 25 and $50\; {\mu}g/ml$ of RVLEE suppressed PMA-induced COX-2 gene activity. These data suggest that RVLEE have inhibitory effect of cell proliferation, induction of apoptosis and, thus, may offer therapeutic potential in Hep G2.

Antiproliferative and Antioxidative Activities of Methanol Extracts of Echinacea angustifolia (Echinacea angustifolia 메탄올 추출물의 암세포 증식억제 및 항산화 효과)

  • Lee Joon-Kyoung;Koo Seung-Ja
    • Korean journal of food and cookery science
    • /
    • v.21 no.3 s.87
    • /
    • pp.311-318
    • /
    • 2005
  • Echinacea, also blown as the purple coneflower, is a herbal medicine that has been used for centuries, customarily as a treatment for the common cold, coughs, bronchitis, upper respiratory infections, and some inflammatory conditions. We investigated the effects of methanol extracts of Echinacea angustifolia on the cytotoxicity against cancer cells $(HepG_2,\;3LL,\;HL60,\;L1210)$ and antioxidative activity. From the test results, each part of Echinaceashowed a cytotoxic effect against the cancer cell lines, and this cytotoxic effect increased with increasing sample concentration. At 1.0 mg/mL concentration the relative cytotoxic activities of the flower bud, leaf, stern and root parts were $90.5\%,\;52.7\%,\;37.1\%\;and\;19.2\%$, respectively, in $HepG_2$ cells, and $75.5\%,\;93.3\%,\;81.2\%,\;and\;75.1\%$ respectively, in HL60 cells, as evaluated by MTT assay. $IC_{50}(50\%\;inhibitory\;concentration)$ of the methanol extracts of the Echinacea flower bud was 0.214 mg/mL on /$HepG_2$ cells, and that of the Echinacea leaf and root was 0.166 mg/mL and 0.210 mg/mL, respectively, on HL60 cells. After /$HepG_2$ cells were incubated for 6 days at $37^{\circ}C$ with various concentrations of each part, the cell number increased while the inhibition rate on the /$HepG_2$ cell growth decreased. The antioxidative activities of the flower bud, leaf, stem and root parts were $59.0\%$ (0.75 mg/mL), $80.76\%$ (0.5 mg/mL), $95.5\%$ (0.25mg/mL) and $98.15\%$ (0.25 mg/mL), respectively, as evaluated by electron donating ability. These results indicated that Echinacea angustifolia has strong anticancer and antioxidative effects in vitro.

Effect of CLA (Conjugated Linoleic Acid) on the Anti-Atherosclerotic actors in Human Hepatoma HepG2 Cells (간암세포 (HepG2 Cell)에서의 식이성 CLA(Conjugated Linoleic Acid)가 항동맥경화성 인자에 미치는 영향)

  • 오현희;문희정;이명숙
    • Journal of Nutrition and Health
    • /
    • v.37 no.3
    • /
    • pp.182-192
    • /
    • 2004
  • Conjugated linoleic acid (CLA) is the mixture of positional and geometric isomers of linoleic acid (LA), which is found abundantly in dairy products and meats. This study was performed to investigate the anticarcinogenic effect of CLA in HepG2 hepatoma cells. HepG2 cell were treated with LA and CLA at the various concentrations of 10, 20, 40, 80 uM each at different incubation times. After each incubation times, cell proliferation, fatty acids incorporation into cell, peroxidation and postaglandin E$_2$ (PGE$_2$) and thromboxane $A_2$ (TXA$_2$) for the eicosanoid metabolism were measured. LA treated HepG2 cells were increased cell growth 6 - 70% of control whereas CLA increased cell death the half of those in LA group (p 〈 0.001). LA and CLA were incorporated very well into the cellular membranes four times higher than in control according to concentration and longer incubation times. Moreover, LA synthesized significantly arachidonic acids corresponding with LA concentration compared to CLA supplementation. The supplementation with LA increased intracellular lipid peroxides concentration corresponding with LA concentration and five times higher than those in CLA significantly at any incubation times (p 〈 0.001). PGE$_2$ and TXA$_2$ levels were three to twenty times lower in condition of CLA treatments than LA, respectively. Overall, the dietary CLA might change the HepG2 cell growth by the changes of cell composition, production of lipid peroxide. Since CLA have not changed the levels of arachidonic acid of cell membrane, which was sources of eicosanoids, eicosanoid synthesis was not increased in CLA compared to LA. Our results was suggest CLA has a possibility to protect the progress of atherosclerosis because CLA does not produce lipid production and endothelial contraction factors in liver.