• Title/Summary/Keyword: Hep-G2 cell

Search Result 800, Processing Time 0.029 seconds

Effects of miR-152 on Cell Growth Inhibition, Motility Suppression and Apoptosis Induction in Hepatocellular Carcinoma Cells

  • Dang, Yi-Wu;Zeng, Jing;He, Rong-Quan;Rong, Min-Hua;Luo, Dian-Zhong;Chen, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4969-4976
    • /
    • 2014
  • Background: miR-152 is involved in the genesis and development of several malignancies. However, its role in HCC has not been fully clarified. The aim of this study was to investigate the clinicopathological significance of miR-152 and its effect on the malignant phenotype of HCC cells. Methods: miR-152 expression was detected using real-time quantitative RT-PCR in 89 pairs of HCC formalin-fixed paraffin-embedded and their adjacent tissues. Functionally, in vitro effects and mechanisms of action of miR-152 on proliferation, viability, caspase activity, apoptosis and motility were explored in HepG2, HepB3 and SNU449 cells, as assessed by spectrophotometry, fluorimetry, fluorescence microscopy, wound-healing and Western blotting, respectively. Results: miR-152 expression in HCC was downregulated remarkably compared to that in adjacent hepatic tissues. miR-152 levels in groups of advanced clinical stage, larger tumor size and positive HBV infection, were significantly lower than in other groups. A miR-152 mimic could suppress cell growth, inhibit cell motility and increase caspase activity and apoptosis in HCC cell lines. Furthermore, Western blotting showed that the miR-152 mimic downregulated Wnt-1, DNMT1, ERK1/2, AKT and TNFRS6B signaling. Intriguingly, inverse correlation of TNFRF6B and miR-152 expression was found in HCC and bioinformatics confirmed that TNFRF6B might be a target of miR-152. Conclusions: Underexpression of miR-152 plays a vital role in hepatocarcinogenesis and lack of miR-152 is related to the progression of HCC through deregulation of cell proliferation, motility and apoptosis. miR-152 may act as a tumor suppressor miRNA by also targeting TNFRSF6B and is therefore a potential candidate biomarker for HCC diagnosis, prognosis and molecular therapy.

Glycoantigen Biosyntheses of Human Hepatoma and Colon Cancer Cells are Dependent on Different N-Acetylglucosaminyltransferase-III and -V Activities

  • Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.891-900
    • /
    • 2004
  • UDP-N-Acetylglucosamine(GlcNAc):$\beta$1,4-D-mannoside$\beta$-l ,4N-acetylglucosaminyltransferase-III (GnT-III) and UDP-N-GlcNAc:$\alpha$-6-D-mannosid$\beta$-1,6N-acetylglucosaminyltransferase-V(GnT - V) activities were determined in human hepatoma cell lines and metastatic colon cancer cells, and their activities were compared with those of normal liver cells and fetal hepatocytes. GnT-III activities were higher than those of GnT-V in hepatic carcinoma cells. When the two enzyme activities were assayed in highly metastatic colon cancer cells, GnT - V activities were much higher than those of GnT-III. When GlcN, GlcN-biant-PA and UDP-GlcNAc were used as substrates, the enzymes displayed different kinetic properties between hepatic and colon cancer cells, depending on their metastatic potentials. Normal cells of two origins had characteristically very low levels of GnT-III and -V activities, whereas hepatoma and colon cancer cells contained high levels of activities. These data were supported by RT-PCR and Northern blot analyses, showing that the expression of GnT-III and -V mRNAs were increased in proportion to the enzymatic activities. The increased GnT-III, md -V activities were also correlated with increased glycosylation of the cellular glycoproteins in hepatoma and colon cancer cells, as examined by lectin blotting analysis by using wheat germ glutinin (WGA), erythroagglutinating phytohemagglutinin (E-PHA), leukoagglutinating phytohemagglutinin (L-PHA), and concanavalin A (Con A). Treatment with retinoic acid, a differentiation agent, resulted in decreases of both GnT-III and -V activities of HepG2 and HepG3 cells. In colon carcinoma cells, however, treatment with retinoic acid resulted in a reduction of GnT-V activity, but not with GnT-III activity. Although the mechanism underlying the induction of these mzymes is unclear, oligosaccharides in many glycoproteins have been observed of cancer cells.

Antimutagenicity and Cytotoxic Effects of Methanol Extract from Deep Sea Water Salt and Sea Tangle Added Soybean Paste (Doenjang) (해양심층수염 및 다시마분말을 첨가한 개량식 된장의 항돌연변이원성 및 암세포성장억제에 미치는 영향)

  • Ham, Seung-Shi;Kim, Soo-Hyun;Yoo, Su-Jong;Oh, Hyun-Taek;Choi, Hyun-Jin;Chung, Mi-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.416-421
    • /
    • 2008
  • This study was performed to determine the antimutagenic and anticytotoxic effects of soybean paste (doenjang) added deep sea water salt and see tangle in Salmonella Typhimurium TA98, TA100 and human cancer cell lines. In the Ames test, methanol extract of doenjang did not exhibit any mutagenicity but showed substantial inhibitory effects against mutation induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 4-nitroquinoline-1-oxide (4NQO). The methanol extracts of doenjang ($200{\mu}g$/plate) added deep sea salt and see tangle (doenjang C) showed approximately 89.1% and 70% inhibitory effect on the mutagenesis induced by MNNG and 4NQO against TA100 strain, whereas 84.4% inhibitions were observed on the mutagenesis induced by 4NQO against TA98 strain. The cytotoxic effects of doenjang methanol extracts against the cell lines with human cervical adenocarcinoma (HeLa), human hepatocellular carcinoma (Hep3B), human gastric carcinoma (AGS), human lung carcinoma (A549) and human breast adenocarcinoma (MCF-7) were inhibited with the increase of the extract concentration. The treatment of 1.0 mg/mL doenjang C of methanol extracts showed strong cytotoxicities of 71%, 74.4%, 66.2%, 77.3%, and 71.2% against HeLa, Hep3B, AGS, A549, and MCF-7, respectively. In contrast 1 mg/mL treatment of doenjang C methanol extracts had only $10{\sim}40%$ cytotoxicity on normal human embryonal kidney cell (293). Doenjang methanol extract inhibited significantly the tumor growth in mice injected sarcoma-180 cells. Especially, doenjang C methanol extract showed an inhibition of tumor cell activity of 33% by the administration of 25 mg/kg methanol extracts.

Protective Effects of Yinjinchunggan-tang (YJCGT) on Alcohol-induced Oxidative Stress (인진청간탕(茵蔯淸肝湯)의 알코올성 산화스트레스에 대한 보호효과 연구)

  • Kim, Young-Tae;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.550-564
    • /
    • 2011
  • Objectives : Oxidative stress seems to play a major role in mechanisms by which ethanol causes liver injury. Previous studies have shown that treatment with Yinjinchunggan-tang (Yinchenqinggan-tang, YJCGT) has protective effects on alcoholic liver disease. The aim of this study was to investigate the protective effects of YJCGT on alcohol-induced oxidative stress. Materials and Methods : In vitro, we evaluated the inhibitory activities of YJCHT on DPPH(1,1-diphenyl-2-picryl-hydrazyl), xanthine oxidase, trypsin, and hyaluronidase. In a cell culture model, we measured cell viability and proliferation, and the activities of superoxide dismutase (SOD), and catalase (CAT) after YJCGT treatment in C34 and E47 cell lines, and HepG2 cells transfected with/ without cytochrome P450IIE1 (CYP2E1) gene. In vivo, we estimated serum level of hepatic biochemical markers, and alcohol concentration in the blood. Results : YJCGT showed significant free radical scavenging activity against DPPH and xanthine oxidase and decreased hyaluronidase activity effectively in vitro. YJCGT also increased cell viability, and proliferation in C34 and in E47 cell lines, and increased activities of superoxide dismutase, and catalase in C34 and in E47 cell lines. YJCGT reduced serum AST, LDH, and total cholesterol level in some of the results, and reduced blood alcohol concentration in vivo, as well. Conclusions : This study suggests that YJCGT has protective effects on oxidative stress by inhibiting alcohol-induced suppression of antioxidant enzyme activities.

The Antioxidative Effects of Rhododendron brachycarpum Extracts (만병초(Rhododendron brachycarpum) 추출물의 항산화 효과)

  • Rhim, Tae-Jin;Choi, Moo-Young
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.456-460
    • /
    • 2011
  • The objective of this study was to investigate the antioxidative capacity of Rhododendron brachycarpum 95% ethanol extracts. Total antioxidant status was examined by total antioxidant capacity against ABTS radical reactions. Total antioxidant capacities of R. brachycarpum extract at the concentrations of 0.2 and 1 mg/mL were 0.33 and 2.26 mM Trolox equivalents, respectively. Superoxide scavenging activities of R. brachycarpum extract at the concentrations of 0.2 and 1 mg/mL were 45.0 and 77.0%, respectively. Oxygen radical absorbance capacities of R. brachycarpum extract at the concentrations of 5 and 100 ${\mu}g/mL$ were 40.88 and 131.00 ${\mu}M$ Trolox equivalents, respectively. Total phenolic contents of R. brachycarpum extract at the concentrations of 0.2 and 1 mg/mL were 0.37 and 1.25 mM gallic acid equivalents, respectively. R. brachycarpum extract at the concentration of 0.1 mg/mL inhibited 0.2 mM and 0.5 mM tert-butyl hydroperoxide induced cyototoxicity by 52.1 and 30.3%, respectively, in HepG2 cell culture system. Thus, strong antioxidant and cytotoxicity-inhibiting effects of R. brachycarpum extract seem to be due to, at least in part, the prevention from free radicals-induced oxidation as well as high levels in total phenolic contents.

Antitumor Effects of Kluyveromyces marxianus TFM-7 Isolated from Kefir

  • Lee, Hyun-Jung;Nam, Bo-Ra;Kim, Jin-Man;Kim, Ji-Yeon;Paik, Hyun-Dong;Kim, Chang-Han
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.133-137
    • /
    • 2007
  • The Strain TFM-7, Which has an antitumor effect, was isolated from Kefir and identified based on analysis using the API 50 CHL kit and 265 rDNA sequencing. Strain TFM-7 was confirmed to belong to the genus Kluyveromyces. Analysis of the 265 rDNA nucleotide sequences found strain TFM-7 to be related to Kluyveromyces marxianus. NRRL Y-828IT. K. marxianus. TFM-7 was cultured with potato dektrose broth medium at $27^{\circ}C$ for 72 hr, and its inhibition effects on the proliferation of seven tumor cell lines and a normal cell line were assessed using the MTT assay. The antitumor effects and growth characteristics of K. marxianus TFM-7 were investigated during a culture period of 7 days. By the $3^{rd}\;day$, K. marxianus TFM-7 showed a dry cell weight 2.39 g/L, a pH of 4.39, an ethanol content of 0.89%, and an inhibition effect on the proliferation of seven tumor cell lines above 50%, except for A-549 tumor cell line. K. marxianus TFM-7 was the most effective at inhibiting the growth of Hep-2 cell line among all tumor cell lines tested. Growth inhibition of a normal cell line, NIH/3T3, was less than 35%, suggesting a decreased level of cytotoxicity toward normal cells. These results indicate that K. marxianus TFM-7 may have used as a yeast strain with antitumor activity.

Protective effect of Allium ochotense Prokh. extract against ethanol-induced cytotoxicity (산마늘 추출물의 알코올 유도 세포독성에 대한 간 세포 보호 효과)

  • Tae Yoon Kim;Jong Min Kim;Hyo Lim Lee;Min Ji Go;Seung Gyum Joo;Ju Hui Kim;Han Su Lee;Seon Jeong Sim;Ho Jin Heo
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.526-537
    • /
    • 2023
  • This study aimed to evaluate the antioxidant and hepatoprotective effects of aqueous and 60% ethanol extracts of Allium ochotense Prokh. against alcohol-induced cytotoxicity as well as on the activities of alcohol-metabolic enzymes. Antioxidant effects of the extracts were analyzed using 3-ethylbenzothiazoline-6-sulfonic acid, 1,1-diphenyl-2-picrylhydrazl, ferric reducing antioxidant power, and malondialdehyde assays, and found that both extracts exhibited considerable antioxidant activities. Additionally, both extracts showed synergistic effects on the activities of alcohol-metabolic enzymes, such as alcohol dehydrogenase, but not on the activity of aldehyde dehydrogenase. In addition, 2'-7'-dichlorodihydrofluorescein diacetate (DCF-DA) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays revealed that aqueous and 60% ethanol extracts reduced oxidative stress and increased cell viability. Moreover, both extracts regulated the expression of apoptosis-related proteins, namely B-cell lymphoma (BCl-2), BCl-2 associated X (BAX), and pro-caspase-3, in HepG2 cells. In conclusion, aqueous and 60% ethanol extracts of A. ochotense Prokh. might be valuable functional materials derived from natural resources for the prevention of ethanol-induced cytotoxicity.

In vitro Anti-tumor Effect of an Engineered Vaccinia Virus in Multiple Cancer Cells and ABCG2 Expressing Drug Resistant Cancer Cells (재조합 백시니아 바이러스의 다양한 암세포 및 ABCG2 과발현 내성 암세포에 대한 항 종양 효과 연구)

  • Park, Ji Hye;Yun, Jisoo;Heo, Jeong;Hwang, Tae Ho;Kwon, Sang Mo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.835-846
    • /
    • 2016
  • Chemo-resistance is the biggest issue of effective cancer therapy. ABCG2 is highly correlated with multi-drug resistance, and represent a typical phenotype of multiple cancer stem-like cells. Accumulating evidence recently reported that oncolytic viruses represent a new strategy for multiple aggressive cancers and drug resistant cancers including cancer stem cell-like cells and ABCG2 expressing cells. In this study, we generated an evolutionally engineered vaccinia virus, SLJ-496, for drug-resistant cancer therapy. We first showed that SLJ-496 treatment enhanced tumor affinity using cytopathic effect assay, plaque assay, as well as cell viability assay. Next, we clearly demonstrated that in vitro SLJ-496 treatment represents significant cytotoxic effect in multiple cancers including colorectal cancer cells (HT-29, HCT-116, HCT-8), gastric cancer cells (AGS, NCI-N87, MKN-28), Hepatocellular carcinoma cells (SNU-449, SNU-423, SNU-475, HepG2), as well as mesothelioma cell (NCI-H226, NCI-H28, MSTO-221h). Highly ABCG2 expressing HT-29 cells represent cancer stem like phenotype including stem cell marker expression, and self-renewal bioactivities. Interestingly, we demonstrated that in vitro treatment of SLJ-496 showed significant cytotoxicity effect, as well as viral replication capacity in ABCG2 overexpressing cell. In addition, we also demonstrated the cytotoxic effect of SLJ-496 in Adriamycin-resistant cell lines, SNU-620 and ADR-300. Taken together, these findings provide us a pivotal clue that cancer therapy using SLJ-496 vaccinia virus might be new therapeutic strategy to overcome ABCG2 expressing cancer stem-like cell and multiple chemo-resistance cancer cells.

Effects of Cirsium japonicum var. ussuriense Extract on Tumor Immunity

  • Park, Mee-Ryung;Cho, Jung-Hyo;Yoo, Hwa-Seung;Son, Chang-Gue;Cho, Chong-Kwan;Lee, Yeon-Weol
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.30-47
    • /
    • 2006
  • Objective : The present study is aimed to elucidate the effects of Cirsium japonicum var. ussuriense on immunomodulation and the potential as an herbal remedy for cancer treatment. Method : It was performed through measurement of effects Cirsium japonicum var. ussuriense extract (CJE) on NO production, NK cell cytotoxicity and cytokine gene expressions related with macrophage and NK cell activity. Result : 1. CJE did not show any direct cytotoxic effects on 7250, HT1080, Hep G2 and CT-26 cells. 2. CJE activated macrophages partially to product NO and up-regulated gene expressions for iNOS in RAW 264.7 cells. 3. CJE promoted cytotoxicity of NK cells against YAC-1 cells at higher concentration than 200 ${\mu}g/ml$. 4. CJE up-regulated gene expressions for $IL-1{\beta}$, IL-2, iNOS, $IFN-{\gamma}$ and $TNF-{\alpha}$ in mice splenocytes. 5. CJE inhibited lung tumor metastasis induced by CT-26 cell transplantation compared with the control group. Conclusion : It could be concluded that CJE is an effective herbal drug for immune modulating and anti-cancer treatment by promoting activity of macrophages and NK cells.

  • PDF

Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines

  • Zhu, Yu;Liu, Xing-Jun;Yang, Ping;Zhao, Meng;Lv, Li-Xia;Zhang, Guo-Dong;Wang, Qin;Zhang, Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3219-3226
    • /
    • 2014
  • Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. ${\beta}$-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells.