• Title/Summary/Keyword: Hemolytic Vibrio

Search Result 27, Processing Time 0.027 seconds

Bacteriological Characteristics of Unidentified Vibrio sp., Hemolysin Producer Isolates front Brackish Water -1. Bacteriological Characteristics of Vibrio sp., D9 (V. kumkang) Similar to V. mimicus (기수에서 분리된 용혈독소를 생산하는 미분류 Vibrio sp.의 세균학적 특징 -1. V. mimicus와 유사한 Vibrio sp. D9의 세균학적 특성)

  • KIM Young-Man;OH Hee-Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.585-590
    • /
    • 2000
  • A hemolysin producing strain was isolated from Kum rivet estuary located in west part of Korea. In the process of identification the isolated strain was similar to V. mimicus but did not show characteristics of known Vibrio species; therefore, the strain was designated as Vibrio sp. D9 ( V. kumkang) tentatively and further identification study was carried out by comparing its bacteriological characteristics, Morphologically Vibrio sp. D9 was a typical straight roe with a polar flagellium. Among known Vibrio species no identical strains were found when using automatic bacteria identification system ($MicioLog^(TM)$system, release 4.0, Biolog Inc., USA) which evaluated the ability of metabolizing 95 kinds of carbon and nitrogen sources. Vibrio sp. D9 showed 18 and 13 different responses as compared to V. mimicus and V. cholerae, respectively. Clear hemolysis zones were observed with the strain against human and sheep blood agar plate, Hemolytic toxicity was confirmed by strong vascular permeability and fatal toxicity against mouse was also observed. Thus the strain was a pathogenic vibrio. Growth conditions for Vibrio sp. D9 were salinity of $0{\~}5.0{\%}$, pH of $6.4{\~}9.8$, temperature of $15{\~}41^{\circ}C$, respectively.

  • PDF

Physiological characterization of kinetics and action mechanism of vibrio hemolysin

  • Choe, Young-Chool;Jeong, Cajin
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.289-294
    • /
    • 1995
  • The action mechanism of hemolysin rendering virulency of Vibrio anguilarum has not clarified as yet, even though there were several possible factors explained. We have studied hemolytic kinetics performed by hemolysin from V. anguillarum strain V7 as well as binding of hemolysin to RBC membrane. Maximal rate of hemolysis and duration of lag phase were directly and inversly correlated to the concentration of hemolysin used. Hemolysin molecules are known to bind consumptively with proper diameter, while other protectants with smaller diameter could not. In conclusion, hemolysin should bind irreversibly to RBC membrane exert hemolysis distorting osmotic pressure. The binding could be hindered by spatial structure of the RBC surfacem which might be caused by sialic acid.

  • PDF

Physiological and Ecological Characteristics of Hemolytic Vibrios and Development of Sanitary Countermeasure of Raw Fisheries Foods 1. Isolation and Identification of Novel Pathogenic Vibrio sp. Producing Hemolysin (용혈독소를 생산하는 기수성 비브리오균의 생리${\cdot}$생태적 특성과 수산식품의 위생 대책 1. 용혈독소를 생산하는 새로운 병원성 Vibrio sp.의 분리와 동정)

  • KIM Young-Man;CHOI Gil-Bae;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.361-366
    • /
    • 1997
  • To determine the physiological, biochemical characteristics and toxicity of hemolysin produced by a novel sucrose positive Vibrio (Vibrio sp. D5) isolated from estuary of Kum river, it was compared with already known sucrose positive Vibrio. Salinity, pH, temperature and conductivity of place where Vibrio sp. D5 was isolated were $4.7\%_{\circ},\;7.6,\;24^{\circ}C$ and $7800{\mu}MHOS$, respectively. Physiological and biochemical characteristics distingiushed Vibrio sp. D5 from other sucrose positive Vibrio: V. alginoipicus, V. cholerae, V. cincinnatiensis, V. fluvialis, V. furnissii and V. metschnikovii. The range of salinity and pH for growth of Vibrio sp. D5 were $0.5\%\~7.5\%$ and $4.5\~9.5$, respectively. Vibrio sp. D5 exhibited typical yellow colony on TCBS agar plate and curved rod type upon transmission electron microscopy (TEM). Vibrio sp. D5 had lethal toxicity against mouse in case of intraperitoneal injection with its culture and showed hemolysin activity on human blood agar and sheep blood agar. Ubrio sp. D5 also demonstrated vascular permeability activity toward rat. From the above results, Vibrio sp. D5 was ascertained to be a novel pathogenic Vibrio.

  • PDF

Purification and characterization of biochemical properties of hemolysin from Vibrio fluvialis (Vibrio fluvialis 유래의 hemolysin 정제와 생화학적 특성)

  • 이종희;한정현;안선희;김선회;이은미;공인수
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.490-495
    • /
    • 2002
  • Hemolysin (VFH) of V. fluvialis, which is a pathogenic bacteria, causing watery diarrhea with vomiting, abdominal croup, was purified. V. fluvialis was cultivated in BHI medium and the culture supematant was precipitated by ammonium sulfate. The protein was purified by chromatographies on columns of DEAE-cellulose and Mono-Q. Molecular weight of the purified VFH was estimated as 79kDa by SDS-PAGE. The optimal temperature for a maximum hemolytic activity was at around 35$^{\circ}C$ and the activity was decreased at 4$0^{\circ}C$ Cytotoxicity of VFH was also investigated using RTG-2 cell line. LDH assay study showed that 50$\mu\textrm{g}$/m1 of VFH release 80% of total cellular LDH (lactate dehydrogenase) from RTG-2 cell and microscopic observation also showed the morphological change of cell.

Purification of Hemolysin from Vibrio anguillarum Isolated from Fish (어류분리 Vibrio anguillarum 용혈소의 정제)

  • 김영희
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.598-603
    • /
    • 1998
  • A marine microbe, Vibrio anguillarum was isolated from fish and studied for its concerning pathogenic substance of hemolysin. Purification of hemolysin was achieved by the procedure of ammonium sulfate precipitation from cul-ture filtrate, DEAE-cellulose chromatography, and G-200 gel filtration with 36 fold of purification and 2.3% yield. The molecular weight of the purified hemolysin was 38,000 dalton by SDS-PAGE. The purified hemolysin was stable at pH 6-9, below 45$^{\circ}C$, and up to 1% of NaCl, respectively. $Ca^{2+}, Cu^{2+}, Zn^{2+}, Fe^{2+}$ inhibited the hemolytic activity whereas EDTA and $Mg^{2+}$ did not.

  • PDF

Comparative study of Photobacterium damselae subsp. damselae and Vibrios on pathogenicity in vivo (In vivo에서 Photobacterium damselae subsp. damselae와 Vibrio 속 세균의 병원성 비교)

  • Kwon, Mun-Gyeong;Cho, Byoung-Youl;Park, Soo-Il
    • Journal of fish pathology
    • /
    • v.22 no.2
    • /
    • pp.115-124
    • /
    • 2009
  • Photobacterium damselae subsp. damselae and 4 Vibrio spp, V. anguillarum, V. splendidus, V. harveyi and V. ordalii, were isolated from the diseased olive flounders, Paralichthys olivaceus. The pathogenicity of the isolates were compared to mortality, blood biochemical contents, such as alanineaminotransferase(ALT), aspatate aminotransferase(AST), and cortisol level, and non-specific immune responses, nitroblue tetrazolium (NBT) reduction of macrophages and lysozyme activities of serum. The mortalities and levels of ALT, AST and cortisol of fishes infected with P. damselae were higher than those of others but significantly low in non-specific immune responses, NBT and lysozyme activities. These results suggest that P. damsela might produce damselysin having high hemolytic and phospholipase activities, correlated with the pathogenicity. P. damsela could also make an obstruction of internal organs, following increasing in the level of ALT and AST, and depression in host immunity caused by induced high levels of cortisol.

Changes in the Viable Counts and Microflora of Oyster and Weakfish during Cold Storage (굴과 Weakfish의 저온저장중 생균수 및 Microflora의 변화)

  • 박찬성
    • Korean journal of food and cookery science
    • /
    • v.12 no.3
    • /
    • pp.312-319
    • /
    • 1996
  • Oyster (Crassostrea virginica) and Weakfish (Cynoscion regalis) were stored at 6, 0, -4 and -20$^{\circ}C$ for up to 45 days and examined for changes in microflora. Aerobic plate counts (incubated at 21$^{\circ}C$) were performed at selected times during storage and 495 isolates (255 isolates from oyster and 240 isolates from Weakfish) were randomly selected from the plates during the storage. Before the storage of the fishes, viable counts of oyster were 4.9${\times}$10$\^$5/ CFU/g of meat and those of Weakfish were 1.5${\times}$10$^4$ CFU/cm$^2$of skin. Microflora of oyster before storage, the major isolates identified as Pseudomonas spp. (67%) and Vibrio spp. (20%). Pseudomonas ll1/1V-H and Flavobacterium/Cytophaga were predominant genus in the microflora of oyster during cold storage at 6, 0, -4 and -20$^{\circ}C$. The composition of the microflora of Weakfish before storage, Acinetobacter (40%) and Moraxella (33%) were the major species, with Pseudomonas and Vibrio constituting a small percentage of the total isolates. The microflora shifted to predominantly Pseudomonas spp. during storage at 6. 0 and -4$^{\circ}C$, making up from 60 to 100% of isolated strains. During frozen storage, the percentage of isolates identified as Mnraxella increased to 40-60% of the total isolates. During cold storage, halophilic bacteria (Pseudomonas lII/IV-H and Vibrio) were predominant in oyster while nonhalophilic bacteria (Pseudomonas III/IV-NH and Moraxella) were predominant in Weakfish. Vibrio spp. were higher in oyster than in Weak fish. Listeria spp. were not isolated but unidentified ${\beta}$-hemolytic bacteria were islolated from both of the fishes during cold storage.

  • PDF

Pathogenic Vibrio spp. Isolated from the Gwangan Beach of Busan in 2003

  • Park Mi-Yeon;Park Chan-Woong;Kwon Chil-Sung;Chang Dong-Suck
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.1
    • /
    • pp.10-15
    • /
    • 2004
  • A total of 52 pathogenic Vibrio strains was isolated from the Gwangan Beach during summer in 2003. The isolated vibrios were composed of 6 different species: V. parahaemolyticus, V. cholerae non O1, V. fluvialis, V. vulnificus, V. alginolyticus, and V. mimicus. V. parahaemolyticus was most predominant as $46\%$ (24/52), V. cholerae non O1 was the second with $23\%$ (12/52), and V. fluvialis was the third with $17\%$ (9/52). Among the isolated strains, 22 strains showed hemolytic, proteolytic or ureolytic activity. Eight strains showed both hemolysin and protease activities, and either 6 strains showed only hemolysin activities and 7 strains only protease activities. Only one strain of V. parahaemolyticus isolates showed urease activity. The urease-positive V. parahaemolyticus strain (V. parahaemolyticus S25) showed the same biochemical characteristics as the reference strain, V. parahaemolyticus KCTC 2471 (urease­negative) except for urease production. To compare the degree of virulence of Vibrio strains having different pathogenic factors, hemolysin, protease, or urease-positive strains were injected into groups of 10 each of ICR mice (7- to l0-week-old male). The lethal rate of urease-positive V. parahaemolyticus S25 was significantly high, being $70\%$. Protease-positive strains showed $40-60\%$ of lethal rate. Hemolysin-positive strains showed no mortality, similar to non-pathogenic V. parahaemolyticus KCTC 2471 and V. parahaemolyticus FM12.

Bacterial diseases of flounder, Paralichthys olivaceus (넙치의 세균성(細菌性) 질병(疾病))

  • Kanai, Kinya
    • Journal of fish pathology
    • /
    • v.6 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Flounder culture has been developed mainly in the western parts of japan, and, to date, following six bacterial diseases have been reported. Bacterial white enteritis occurs in 16 to 30-day-old flounder larvae and often causes mass mortality in seed production. Bacterium named Vibrio sp. INFL invades and multiplies in the mucosae of posterier part of intestine, and causes desquamative enteritis. Gliding bacterial disease occurs mostly in juvenile stage and in spring to summer. Diseased signs are partial discoloration and erosion of skin and fins. Histologically, epidermis are removed, and the causative bacterium, Flexibacter maritimus, multiplies on the surface of demis and invades into the muscular tissue. Vibriosis caused by Vibrio anguillarum and related organisum is one of the well-known diseases among marine fish. Outbreaks of the disease in flounder culture are relatively few, but mass mortalities in fingerlings due to the disease were reported. An outbreak of nocardiosis in the autumn of 1984 has been reported, but since then the disease scarcely occurred. The disease is characterized by formation of abscesses under the skin and white nodes in the gill, heart, spleen and kidney. Streptococcicosis occurs frequently in recent years. Beta-hemolytic streptococcus is the causative bacterium, which possesses the same biochemical and serological characteristics as $\beta$-streptococci isolated from some marine and freshwater fish, and is seemed to related to Streptococcus iniae. Edwardsiellosis is the disease that causes most damage in flounder culture in Japan. Characteristic symptoms are swelling of abdomen and intestinal protrusion from the anus due to accumulation of ascites. Edwardsiella tarda, a well-known pathogen of freshwater fish, is the causative bacterium of the disease.

  • PDF

Physiological and Ecological Characteristics of Hemolytic Vibrios and Development of Sanitary Countermeasure of Raw Fisheries Foods 3. Growth Factor and Antibiotic Susceptibility of Vibrio cholerae non-O1 FM-3 Isolated from Sea Water (용혈독소를 생산하는 기수성 비브리오균의 생리${\cdot}$생태적 특성과 수산식품의 위생대책 3. 해수에서 분리된 Vibrio cholerae non-O1 FM-3의 생육인자와 항생제 감수성)

  • KIM Shin-Hee;PARK Mi-Yeon;PARK Uk-Yeon;KIM Young-Man;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.550-555
    • /
    • 1997
  • Vibrio cholerae non-O1 (V. cholerae non-O1) was previously called nonagglutinable or noncholera vibrios, since it fails to react with polyvalent O1 antisera. This organism is biochemically and genetically indistinguishable from V. cholerae O1 except serological difference. V. cholerae non-O1 strains are often detected in the environment including bays, estuaries, and fresh water, and also found in food. Therefore it is designated food borne bacterium in Japan. However, research papers on V. cholerae non-O1 are very rare in Korea. In order to investigate bacteriological characteristics of V. cholerae non-O1, we isolated V. cholerae non-O1 from the environmental sea water. Among the isolated V. cholerae non-O1 strains, we selected the strain which had the most strong hemolytic activity, named as V. cholerae non-O1 FM-3. The optimum growth conditions of V. cholerae non-O1 FM-3 were $37^{\circ}C$ and pH 8.5 in BHI broth (containing $0.5\%$ sodium chloride), and it grew better than V. cholerae non-O1 ATCC 25872. But both were not able to grow in BHI broth added $5.0\%$ of sodium chloride or adjusted to pH 5.0. According to the experimental results on the susceptibility test against various antibiotics, there were no significant differences between the isolated strain and reference strain (V. cholerae non-O1 ATCC 25872). Most of the antibiotics examined had bacteriostatic action against V. cholerae non-O1 FM-3 while vancomycin, oxacillin, colistin, polymyxin B, and sulfadiazine had no bacteriostatic activity.

  • PDF