• 제목/요약/키워드: Hemeoxygenase-1

검색결과 14건 처리시간 0.041초

Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.497-502
    • /
    • 2014
  • In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

말뼈추출물의 Hemeoxygenase-1의 발현 조절을 통한 시험관내 항염증 효과 (In vitro Anti-oxidative and Anti-inflammatory Activities of Horse-bone Extract via Up-regulation of Heme-oxygenase 1)

  • 임은주;이기자;조길재;김현경;김석;이만휘
    • 농업생명과학연구
    • /
    • 제50권2호
    • /
    • pp.139-150
    • /
    • 2016
  • 말뼈추출물은 다양한 골질환의 예방과 치료에 탁월한 효능이 있다고 이전에 보고되었다. 하지만 말뼈추출물의 다른 약리학적 효능에 대해서는 아직 자세히 밝혀지지 않고있다. 본 연구에서는 말뼈추출물이 중요한 항산화 인자인 hemeoxygenase-1(HO-1)의 발현을 상승시킬 수 있는지, 만약 발현이 증가한다면 HO-1의 상향 조절이 대식세포에서 항염증 효과를 매개할 수 있는지에 관하여 조사하였다. 이를 위해서 nitric oxide(NO) 농도측정, 세포 생존능 측정, DPPH 라디칼 소거능 검사를 시행하였다. 또한 염증성 사이토카인 유전자 발현과 단백질 발현을 측정하기 위해 real time PCR과 Western blotting을 시행하였다. 말뼈추출물은 lipopolysaccharide(LPS, 0.1㎍/ml)로 자극한 대식세포주인 RAW264.7 세포에서 어떠한 세포독성 없이 NO의 생성을 유의성 있게 억제하였으며 inducible nitric oxide(iNOS)와 cyclooxygenase 2(COX-2)의 발현을 억제하였다. 뿐만 아니라 말뼈 추출물은 염증성 사이토카인인 tumor necrosis factor(TNF)-α와 interleukin(IL)-1β의 발현을 억제하였으며 ERK, JNK 및 p-38 MAPK의 단백질 인산화를 억제하였다. 그리고 말뼈추출물은 HO-1과 NF-E2-related factor-2(Nrf-2) 의 발현을 증가시켰고 이것은 말뼈추출물이 가지고 있는 항 염증효과를 매개할 수 있는 것으로 보인다. 즉, 말뼈추출물이 HO-1의 발현을 상향 조절한 반면 ERK1/2의 신호전달 경로에 손상을 주는 것으로 확인되었으며 이러한 말뼈추출물의 효과가 최종적으로 세포손상과 세포의 과산화 자극으로부터 세포를 보호 할 수 있는 것으로 사료된다.

Suppressive Effect of Fermented Angelica tenuissima Root Extract against Photoaging: Possible Involvement of Hemeoxygenase-1

  • Park, Yun-A;Lee, Sung Ryul;Lee, Jin Woo;Koo, Hyun Jung;Jang, Seon-A;Yun, Seung-Won;Kim, Hyun Ju;Woo, Jeong Suk;Park, Myung Rye;Kang, Se Chan;Kim, Youn Kyu;Sohn, Eun-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1391-1400
    • /
    • 2018
  • Angelica tenuissima root has historically been used as a traditional medicine in Korea. Previous studies have identified the anti-melanogenic effects of the extract of A. tenuissima root fermented by Aspergillus oryzae (FAT). This study investigated the protective effects of FAT against ultraviolet light B exposure (UVB; $30mJ/cm^2$) in HaCaT (human keratinocyte) or Hs68 (human foreskin fibroblast) skin cells. FAT treatment was able to stimulate wound healing rate at the basal condition. FAT also favored the maintenance and/or improvement of extracellular matrix impairment caused by UVB irradiation through: 1) upregulation of procollagen Type-1 synthesis and secretion; 2) suppression of MMP-1 and elastase expression. FAT was able to play a role in the attenuation of inflammatory responses caused by UVB irradiation via upregulation of photo-protective hemeoxygease-1 and suppression of proinflammatory cyclooxygenase-2 expression. After further verification of the anti-photoaging potential of FAT, it could be utilized as an effective ingredient in anti-aging and anti-wrinkle cosmetics.

Kalopanaxsaponin A Exerts Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated Microglia via Inhibition of JNK and NF-κB/AP-1 Pathways

  • Jeong, Yeon-Hui;Hyun, Jin-Won;Le, Tien Kim Van;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.332-337
    • /
    • 2013
  • Microglial activation plays an important role in the development and progression of various neurological disorders such as cerebral ischemia, multiple sclerosis, and Alzheimer's disease. Thus, controlling microglial activation can serve as a promising therapeutic strategy for such brain diseases. In the present study, we showed that kalopanaxsaponin A, a triterpenoid saponin isolated from Kalopanax pictus, inhibited inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor (TNF)-${\alpha}$ expression in lipopolysaccharide (LPS)-stimulated microglia, while kalopanaxsaponin A increased anti-inflammatory cytokine interleukin (IL)-10 expression. Subsequent mechanistic studies revealed that kalopanaxsaponin A inhibited LPS-induced DNA binding activities of NF-${\kappa}B$ and AP-1, and the phosphorylation of JNK without affecting other MAP kinases. Furthermore, kalopanaxsaponin A inhibited the intracellular ROS production with upregulation of anti-inflammatory hemeoxygenase-1 (HO-1) expression. Based on the previous reports that JNK pathway is largely involved in iNOS and proinflammatory cytokine gene expression via modulating NF-${\kappa}B$/AP-1 and ROS, our data collectively suggest that inhibition of JNK pathway plays a key role in anti-inflammatory effects of kalopanaxsaponin A in LPS-stimulated microglia.

Phloretin Protects Macrophages from E. coli-Induced Inflammation through the TLR4 Signaling Pathway

  • Chauhan, Anil Kumar;Jang, Mihee;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권3호
    • /
    • pp.333-340
    • /
    • 2020
  • Macrophages are the cells of the first-line defense system, which protect the body from foreign invaders such as bacteria. However, Gram-negative bacteria have always been the major challenge for macrophages due to the presence of lipopolysaccharides on their outer cell membrane. In the present study, we evaluated the effect of phloretin, a flavonoid commonly found in apple, on the protection of macrophages from Escherichia coli infection. RAW 264.7 cells infected with standard E. coli, or virulent E. coli K1 strain were treated with phloretin in a dose-dependent manner to examine its efficacy in protection of macrophages. Our results revealed that phloretin treatment reduced the production of nitric oxide (NO) and generation of reactive oxygen species along with reducing the secretion of proinflammatory cytokines induced by the E. coli and E. coli K1 strains in a concentration-dependent manner. Additionally, treatment of phloretin downregulated the expression of E. coli-induced major inflammatory markers i.e. cyclooxygenase-2 (COX-2) and hemeoxygenase-1 (HO-1), in a concentration dependent manner. Moreover, the TLR4-mediated NF-κB pathway was activated in E. coli-infected macrophages but was potentially downregulated by phloretin at the transcriptional and translational levels. Collectively, our data suggest that phloretin treatment protects macrophages from infection of virulent E. coli K1 strain by downregulating the TLR4-mediated signaling pathway and inhibiting NO and cytokine production, eventually protecting macrophages from E. coli-induced inflammation.

Harmal Extract Induces Apoptosis of HCT116 Human Colon Cancer Cells, Mediated by Inhibition of Nuclear Factor-κB and Activator Protein-1 Signaling Pathways and Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1947-1959
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the second most common type of cancer worldwide in both men and women. It accounts yearly for approximately 9% of all new cases of cancers. Furthermore, the current chemotherapeutic regimens seem unsatisfactory, so that exploration of novel therapeutic modalities is needed. The present study was undertaken to investigate the inhibitory effects of a crude alkaloid extract (CAERS) of a medicinal herb, Rhazya stricta, on proliferation of CRC HCT116 cells and to elucidate mechanisms of action. To achieve these aims, we utilized MTT, comet, DNA laddering and gene reporter assays, along with Western blot and RT-PCR analyses. Results: We found that CAERS inhibited cell proliferation and induced apoptotic cell death in HCT116 cells. Hallmarks of morphological and biochemical signs of apoptosis were clearly evident. CAERS down-regulated DNA-binding and transcriptional activities of NF-${\kappa}B$ and AP-1 proteins, while up-regulating expression of the Nrf-2 protein. It also down-regulated expression levels of the ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin and VEGF and up-regulated levels of Bax, caspase-3/7 and -9, p53, p21, Nrf-2. Markedly, it promoted mRNA expression levels of cytoprotective genes including the hemeoxygenase-1, NAD(P)H quinine oxidoreductase 1 and UDP-glucuronyltransferase. Conclusions: These findings indicate that CAERS exerts antiproliferative action on CRC cells through induction of apoptotic mechanisms, and suggest CAERS could be a promising agent for studying and developing novel chemotherapeutic agents aimed at novel molecular targets for the treatment of CRC.

Protective effect of ultrasonication-processed ginseng berry extract on the D-galactosamine/lipopolysaccharide-induced liver injury model in rats

  • Nam, Yoonjin;Bae, Jinhyung;Jeong, Ji Hoon;Ko, Sung Kwon;Sohn, Uy Dong
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.540-548
    • /
    • 2018
  • Background: Acute hepatic failure is a life-threatening critical condition associated with rapid deterioration of liver function and liver transplantation. Several studies have shown that Panax ginseng Mayer has antidiabetic and hepatoprotective effects. However, the hepatoprotective effect of ginseng berry is still unveiled. In this study, we evaluated the hepatoprotective effects of ultrasonication-processed ginseng berry extract (UGBE) on acute hepatic failure model in rats. Methods: Ginseng berry extract (GBE) was ultrasonically processed. The GBE, silymarin, and UGBE were orally administered to male Sprague-Dawley rats for 4 wk. Twenty-four h after the last administration, rats were challenged with D-galactosamine (D-GalN)/lipopolysaccharide (LPS). Results: After ultrasonication, the component ratio of ginsenosides Rg2, Rg3, Rh1, Rh4, Rk1, Rk3, and F4 in GBE had been elevated. Administration of UGBE significantly increased the survival rate of D-GalN/LPS-challenged rats. Pretreatment with UGBE significantly decreased serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels in D-GalN/LPS-challenged rats in a dose-dependent manner. The levels of enzymatic markers for oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and glutathione) were increased by UGBE treatment in a dose-dependent manner. Tumor necrosis factor alphalevel, inducible nitric oxide synthase activities, and nitric oxide productions were reduced by UGBE treatment. In addition, hemeoxygenase-1 levels in liver were also significantly increased in the UGBE-treated group. The protein expression of toll-like receptor 4 was decreased by UGBE administration. Hematoxylin and eosin staining results also supported the results of this study showing normal appearance of liver histopathology in the UGBE-treated group. Conclusion: UGBE showed a great hepatoprotective effect on D-GalN/LPS-challenged rats via the toll-like receptor 4 signaling pathway.

Nitric Oxide as a Pro-apoptotic as well as Anti-apoptotic Modulator

  • Choi, Byung-Min;Pae, Hyun-Ock;Jang, Seon-Il;Kim, Young-Myeong;Chung, Hun-Taeg
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.116-126
    • /
    • 2002
  • Nitric oxide (NO), synthesized from L-arginine by NO synthases, is a small, lipophilic, diffusible, highly reactive molecule with dichotomous regulatory roles in many biological events under physiological and pathological conditions. NO can promote apoptosis (pro-apoptosis) in some cells, whereas it inhibits apoptosis (anti-apoptosis) in other cells. This complexity is a consequence of the rate of NO production and the interaction with biological molecules such as metal ion, thiol, protein tyrosine, and reactive oxygen species. Long-lasting overproduction of NO acts as a pro-apoptotic modulator, activating caspase family proteases through the release of mitochondrial cytochrome c into cytosol, up-regulation of the p53 expression, and alterations in the expression of apoptosis-associated proteins, including the Bcl-2 family. However, low or physiological concentrations of NO prevent cells from apoptosis that is induced by the trophic factor withdrawal, Fas, $TNF{\alpha}$/ActD, and LPS. The anti-apoptotic mechanism is understood on the basis of gene transcription of protective proteins. These include: heat shock protein, hemeoxygenase, or cyclooxygenase-2 and direct inhibition of the apoptotic executive effectors caspase family protease by S-nitrosylation of the cysteine thiol group in their catalytic site in a cell specific way. Our current understanding of the mechanisms by which NO exerts both pro- and anti-apototic action is discussed in this review article.

Decaisnea insignis 에탄올 추출물의 항산화 및 항염증 활성 (Anti-oxidative and Anti-inflammatory Activities of Decaisnea insignis Ethanol Extract)

  • 진경숙;이지영;권현주;김병우
    • 생명과학회지
    • /
    • 제24권9호
    • /
    • pp.973-980
    • /
    • 2014
  • 본 연구에서는 식물에 존재하는 신규 기능성 소재 개발의 일환으로 Decaisnea insignis 에탄올 추출물(DIEE)의 항산화 및 항염증 생리활성을 분석하였다. 먼저 DIEE의 항산화능을 DPPH 라디칼 소거능을 통해 분석한 결과 양성 대조군으로 사용한 아스코르빈산과 유사한 정도의 높은 소거활성을 보여 DIEE가 매우 강한 항산화능을 보유함을 확인하였다. 또한 RAW 264.7 세포주에서 $H_2O_2$ 및 LPS에 의해 유도된 ROS에 대한 DIEE의 소거능을 분석한 결과, 농도의존적인 강한 ROS 소거능을 보였다. 뿐만 아니라 대표적인 항산화효소 중 하나로 항산화능 보유 천연물에 의해 발현이 유도되는 hemeoxygenase 1 (HO-1) 및 그 전사 인자인 nuclear factor-E2-related factor 2(Nrf2)의 단백질 발현이 DIEE의 처리에 의해 유의적으로 증가됨을 보였으며 이러한 HO-1 및 Nrf2의 발현 유도는 상위신호전달계인 MAPKs에 의해 조절될 가능성을 보였다. 한편 DIEE가 LPS에 의해 유도된 NO 생성에 미치는 영향을 분석한 결과 농도의존적인 NO 생성 저해능을 보였으며 이는 NO 생성 단백질인 iNOS의 발현 저해에서 기인함을 확인하였다. 이와 같은 DIEE의 NO 생성 억제 효과는 염증 상위신호전달계인 $NF-{\kappa}B$ 및 AP-1의 조절을 통해 일어날 가능성을 보였다. 이러한 결과를 통해 DIEE의 높은 항산화능과 항염증 활성을 처음으로 확인하였으며 향후 기능성 소재로서 유용하게 활용될 수 있을 것으로 판단된다.

RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과 (Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells)

  • 박충무;안현;윤현서
    • 대한통합의학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.