• 제목/요약/키워드: Heme proton

검색결과 6건 처리시간 0.019초

Myoglobin 시안 단백질에 포함된 Heme에 대한 전자 및 분자구조 규명을 위한 $^{13}C$ NMR분석 ($^{13}C$ NMR Analysis for the Characterization of Heme Electronic/Molecular Structure in Horse Myoglobin Cyanide)

  • 이강봉;권지혜;이호진;김영만;최영상
    • 분석과학
    • /
    • 제11권1호
    • /
    • pp.73-78
    • /
    • 1998
  • 미오글로빈 시안착물(MbCN) 단백질에 대한 NMR의 HMQC 연구는 수소와 결합된 상자기성 heme 탄소 시그날의 완전한 지정을 가능토록 해준다. 이러한 상자기성 MbCN에 대한 HMQC 실험의 적용은 heme시그날뿐만 아니라 상자기성 아미노산에 대해 결합된 수소와 탄소간의 coherence를 지정하여주며 자연존재량 $^{13}C$시그날의 지정이 모든 low-spin 상자기성 heme단백질에서도 가능하다. 이러한 시그날 지정 전략은 정자기성 영역에서 공명하는 수소 시그날의 지정을 위해 사용되는 NOE에만 의존하는것 보다 훨씬 명확한 시그날지정이 가능하다. 2,4-비닐기의 ${\alpha}$-탄소들과 7-프로피온기의 ${\beta}$-탄소에서 특이한 anti-Curie형태를 보이는 것은 그들이 heme평면에 존재하고 있지 않다는 증거가 된다. Proximal His에 의해 유도된 heme의 전자 및 자성의 비대칭은 heme탄소 시그날공명이 $25^{\circ}C$에서 250 ppm의 범위에 이르도록 한다. 이러한 heme 탄소 시그날 공명은 미오그로빈 heme의 전자구조를 분석하는데 있어서 수소 시그날의 공명보다 더욱 민감한 증거로 작용할수 있다.

  • PDF

Effects of Ionizable Groups on the Redox Potentials of Cytochrome c₃from D. vulgaris Miyazaki F

  • 박장수;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권9호
    • /
    • pp.820-826
    • /
    • 1996
  • The p2H dependence of the NMR chemical shifts of the proton signals of heme methyl groups and ionizable groups in the vicinity of the heme were investigated. The p2H titration of heme methyl signals in four macroscopic oxidation states by saturation tranfer method was performed in the range between p2H 5.2 and 9.0. While the p2H dependence of the heme methyl resonance in fully oxidized state was small, most resonances in the intermediate oxidation states showed certain shifts. Particularly, methyl resonances of heme 1 (sequential heme numbering) exhibited sharp p2H dependence in acidic range. β-CH2 of the propionate of hemes 1 and 4 were titrated in the range of p2H 4.5-9.0. Only the 6-propionate group of heme 1 was protonated in this p2H range and its titration curve was similar to those of methyl resonances of heme 1 in intermediate oxidation states. Analysis of the microscopic redox potentials showed that they change depending on p2H. The ionizable groups responsible for the p2H dependence of these potentials are 6-propionate of heme 1 in acidic range and His 67 in basic range.

Heme proton resonances assignments based on nuclear Overhauser effect

  • Li, Chun-Ri;Kim, So-Sun;Lu, Ming;Park, Jang-Su
    • 한국자기공명학회논문지
    • /
    • 제11권1호
    • /
    • pp.48-55
    • /
    • 2007
  • NMR signals of two hemes were assigned to particular hemes in the crystal structures by nuclear Overhauser effect experiments. The results showed that the hemes with the highest and lowest redox potentials in the one-electron reduction process correspond to the hemes I and IV in the crystal structure.

  • PDF

Paramagnetic Inversion of the Sign of the Interference Contribution to the Transverse Relaxation of the Imido Protons of the Coordinated Imidazoles in the Uniformly $^{15}N$ Labeled Cytochrome $c_3$

  • ;정인철;심윤보;강신원;박장수
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권11호
    • /
    • pp.1197-1201
    • /
    • 2001
  • In the spectrum of uniformly 15N labeled cytochrome c3, the relative linewidths of the doublet peaks of the 15N-coupled imido proton of the coordinated imidazole group were reversed on oxidation. This inversion was explained by the interference relaxation process between the electron-proton dipolar and 15N-1H dipolear interactions. The inversion can be used to assign the imido protons of the coordinated imidazole groups in heme proteins.

Site-directed Mutagenesis of Five Conserved Residues of Subunit I of the Cytochrome cbb3 Oxidase in Rhodobacter capsulatus

  • Ozturk, Mehmet;Gurel, Ekrem;Watmough, Nicholas J.;Mandaci, Sevnur
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.697-707
    • /
    • 2007
  • Cytochrome $cbb_3$ oxidase is a member of the heme-copper oxidase superfamily that catalyses the reduction of molecular oxygen to the water and conserves the liberated energy in the form of a proton gradient. Comparison of the amino acid sequences of subunit I from different classes of heme-copper oxidases showed that transmembrane helix VIII and the loop between transmembrane helices IX and X contain five highly conserved polar residues; Ser333, Ser340, Thr350, Asn390 and Thr394. To determine the relationship between these conserved amino acids and the activity and assembly of the $cbb_3$ oxidase in Rhodobacter capsulatus, each of these five conserved amino acids was substituted for alanine by site-directed mutagenesis. The effects of these mutations on catalytic activity were determined using a NADI plate assay and by measurements of the rate of oxygen consumption. The consequence of these mutations for the structural integrity of the $cbb_3$ oxidase was determined by SDS-PAGE analysis of chromatophore membranes followed by TMBZ staining. The results indicate that the Asn390Ala mutation led to a complete loss of enzyme activity and that the Ser333Ala mutation decreased the activity significantly. The remaining mutants cause a partial loss of catalytic activity. All of the mutant enzymes, except Asn390Ala, were apparently correctly assembled and stable in the membrane of the R. capsulatus.