• Title/Summary/Keyword: Hematopoietic Cells

Search Result 329, Processing Time 0.022 seconds

Co-expression of MDRI and HLA-B7 Genes in a Mammalian Cell Using a Retrovirus

  • Lee, Seong-Min;Lee, Kyoo-Hyung;Kim, Hag-Dong;Lee, Je-Hwan;Lee, Jung-Shin;Kim, Joon
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.176-181
    • /
    • 2001
  • Using a retrovirus, foreign genes can be introduced into mammalian cells. The purpose of this study is to produce a retrovirus that can make the infected cells express two genes; the human multidrug resistance gene (MDR1) and the HLA-B7 gene, which is one of the major human histocompatibility complex (MHC) class I genes. For the expression of these genes, the internal ribosome entry site (IRES) was used, which was derived from the encephalomyocarditis (EMC) virus. In order to produce retroviruses, a retroviral vector was transfected into a packaging cell line and the transfected cells were treated with vincristine, which is an anti-cancer drug and a substrate for the MDRI gene product. This study revealed that two genes were incorporated into chromosomes of selected cells and expressed in the same cells. The production of the retrovirus was confirmed by the reverse transcription (RT)-PCR of the viral RNA. The retrovirus that was produced infected mouse fibroblast cells as well as the human U937. This study showed that packaging cells produced the retroviruses, which can infect the target cells. Once the conditions for the high infectivity of retrovirus into human cells are optimized, thus virus will be used to infect hematopoietic stem cells to co-express MDRl and HLA-B7 genes, and develop the lymphocytes that can be used for the immnogene therapy.

  • PDF

Expression of Gpnmb in NK Cell Development from Hematopoietic Stem Cells

  • Shin, Na-Ra;Lee, Ji-Won;Lee, Ji-Won;Jeong, Mi-Ra;Kim, Mi-Sun;Lee, Suk-Hyung;Yoon, Suk-Ran;Chung, Jin-Woong;Kim, Tae-Don;Choi, In-Pyo
    • IMMUNE NETWORK
    • /
    • v.8 no.2
    • /
    • pp.53-58
    • /
    • 2008
  • Background: Molecular mechanisms of natural killer (NK) cell development from hematopoietic stem cells (HSCs) have not been clearly elucidated, although the roles of some genes in NK cell development have been reported previously. Thus, searching for molecules and genes related NK cell developmental stage is important to understand the molecular events of NK cell development. Methods: From our previous SAGE data-base, Gpnmb (Glycoprotein non-metastatic melanoma protein B) was selected for further analysis. We confirmed the level of mRNA and protein of Gpnmb through RT-PCR, quantitative PCR, and FACS analysis. Then we performed cell-based ELISA and FACS analysis, to know whether there are some molecules which can bind to Gpnmb. Using neutralizing antibody, we blocked the interaction between NK cells and OP9 cells, and checked IFN-${\gamma}$ production by ELISA kit. Results: Gpnmb expression was elevated during in vitro developmental stage and bound to OP9 cells, but not to NK precursor cells. In addition, we confirmed that the levels of Gpnmb were increased at NK precursor stage in vivo. We confirmed syndecan4 as a candidate of Gpnmb's binding molecule. When the interaction between NK cells and OP9 cells were inhibited in vitro, IFN-${\gamma}$ production from NK cells were reduced. Conclusion: Based on these observations, it is concluded that Gpnmb has a potential role in NK cell development from HSCs.

Improved human hematopoietic reconstitution in HepaRG co-transplanted humanized NSG mice

  • Kim, Jin;Ryu, Bokyeong;Kim, Ukjin;Kim, Chang-Hwan;Hur, Gyeung-Haeng;Kim, C-Yoon;Park, Jae-Hak
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.466-471
    • /
    • 2020
  • Several humanized mouse models are being used to study humanspecific immune responses and diseases. However, the pivotal needs of fetal tissues for the humanized mice model have been huddled because of the demand for ethical and medical approval. Thus, we have verified the hematopoietic and immunomodulatory function of HepaRG and developed a new and easy humanized mouse model to replace the use of fetal liver tissue. HepaRG co-transplanted Hu-NSG mice significantly increased CD45+ lymphocytes and CD19+ B cells and CD3+ T cells than normal Hu-NSG, suggesting enhanced reconstitution of the human immune system. These results have improved the applicability of humanized mice by developing new models easily accessible.

Emerging role of anti-proliferative protein BTG1 and BTG2

  • Kim, Sang Hyeon;Jung, In Ryeong;Hwang, Soo Seok
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.380-388
    • /
    • 2022
  • The B cell translocation gene 1 (BTG1) and BTG2 play a key role in a wide range of cellular activities including proliferation, apoptosis, and cell growth via modulating a variety of central biological steps such as transcription, post-transcriptional, and translation. BTG1 and BTG2 have been identified by genomic profiling of B-cell leukemia and diverse lymphoma types where both genes are commonly mutated, implying that they serve as tumor suppressors. Furthermore, a low expression level of BTG1 or BTG2 in solid tumors is frequently associated with malignant progression and poor treatment outcomes. As physiological aspects, BTG1 and BTG2 have been discovered to play a critical function in regulating quiescence in hematopoietic lineage such as Hematopoietic stem cells (HSCs) and naive and memory T cells, highlighting their novel role in maintaining the quiescent state. Taken together, emerging evidence from the recent studies suggests that BTG1 and BTG2 play a central anti-proliferative role in various tissues and cells, indicating their potential as targets for innovative therapeutics.

Immune reconstitution after allogeneic hematopoietic stem cell transplantation in children: a single institution study of 59 patients

  • Kim, Hyun O;Oh, Hyun Jin;Lee, Jae Wook;Jang, Pil-Sang;Chung, Nack-Gyun;Cho, Bin;Kim, Hack-Ki
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.1
    • /
    • pp.26-31
    • /
    • 2013
  • Purpose: Lymphocyte subset recovery is an important factor that determines the success of hematopoietic stem cell transplantation (HSCT). Temporal differences in the recovery of lymphocyte subsets and the factors influencing this recovery are important variables that affect a patient's posttransplant immune reconstitution, and therefore require investigation. Methods: The time taken to achieve lymphocyte subset recovery and the factors influencing this recovery were investigated in 59 children who had undergone HSCT at the Department of Pediatrics, The Catholic University of Korea Seoul St. Mary's Hospital, and who had an uneventful follow-up period of at least 1 year. Analyses were carried out at 3 and 12 months post-transplant. An additional study was performed 1 month post-transplant to evaluate natural killer (NK) cell recovery. The impact of pre- and post-transplant variables, including diagnosis of Epstein-Barr virus (EBV) DNAemia posttransplant, on lymphocyte recovery was evaluated. Results: The lymphocyte subsets recovered in the following order: NK cells, cytotoxic T cells, B cells, and helper T cells. At 1 month post-transplant, acute graft-versus-host disease was found to contribute significantly to the delay of $CD16^+/56^+$ cell recovery. Younger patients showed delayed recovery of both $CD3^+/CD8^+$ and $CD19^+$ cells. EBV DNAemia had a deleterious impact on the recovery of both $CD3^+$ and $CD3^+/CD4^+$ lymphocytes at 1 year post-transplant. Conclusion: In our pediatric allogeneic HSCT cohort, helper T cells were the last subset to recover. Younger age and EBV DNAemia had a negative impact on the post-transplant recovery of T cells and B cells.

Effect of Ginsenoside Rg3 in Mouse Hematopoietic Cells

  • Joo, Seong-Soo;Park, Jeong-Hwan;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.202.2-202.2
    • /
    • 2003
  • Rg3 is a derivative of triterpenoid dammarane, which originally extracted from Red Ginseng, which have been known to have neuroprotective, vasodilator, antioxidative, antimetastasis, and direct anticancer effects. These various backgrounds of Rg3 can provide an additional interest in respect to the “hematopoiesis” in bone marrow and spleen cells. We, therefore, have investigated what effects and correlates of Rg3 (e.g. suppression and side effects) are affected in relation with the bone marrow and spleen cells of mouse. (omitted)

  • PDF

Similar Pattern of Fourier-Transformed Infrared Spectrum of Bond Shift Shown in Human Cervical Cancer Cells and Rat Splenocytes Exposed to Colchicine and Methomyl

  • Sindhuphak, Ratana;Sinhaseni, Palarp;Suramana, Teerayut;Issaravanich, Somchai;Udomprasertkul, Venus;Dusitsin, Nikorn
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.329-333
    • /
    • 2001
  • Apoptosis is the normal physiological process of cell death essential for the maintenance of homeostasis. The function of nicotinamide adenine dinucleotide (NAD) and adenine diphosphate (ADP) ribosylation (transfer of ADP-ribose to proteins) reactions in modifying apoptosis have recently been of great interest. Recently. CD38. a type 2 transmembrane glycoprotein expressed in hematopoietic and non hematopoietic cell lines. has been reported to possess NAD glycohydrolase activity (Han. 1999) and PC-1 and CD38 NADase regulates T cells by inhibition of phosphodiesterase/pyrophosphatase activity of PC-1 by its association with glycosaminoglycan (Hozada et al., 1999). Sindhuphak et al. (2000) has reported that cervical cancer cells can be differentiated from normal cells by using FTIR (Fourier-Transformed Infrared) technique. which has characterized shifts to be due to the phosphodiester bond in nucleic acid. protein amide I&II. carbohydrate and glycogen bands. Mechanisms how phosphodiester bond shift in cervical cancer cells as compared to control cells remain to be elucidated. Suramana et al. (2000) as well as Lohitnavy and Sinhaseni (1998) have studied methomyl and colchicine effects in rat splenocytes. Lactate Dehydroge-nase Isozymes 3 (LDH3) and LDH4 were observed to increase transiently and subsided in plasma of rats exposed to 6~8 mg/kg methomyl after 48 hours. Phosphodiester bond shift of nucleic acid. detected by FTIR. was also reported (Suramana et al., 2000). We report here, after analysis of bond shift patterns. a similar bond shifts detected by FTIR spectrum observed in human cervical cells and splenocytes of rats exposed orally to 2~8 mg/kg methomyl as well as rats exposed to colchicine 2~6 mg/kg orally.

  • PDF

Increased HoxB4 Inhibits Apoptotic Cell Death in Pro-B Cells

  • Park, Sung-Won;Won, Kyung-Jong;Lee, Yong-Soo;Kim, Hye-Sun;Kim, Yu-Kyung;Lee, Hyeon-Woo;Kim, Bo-Kyung;Lee, Byeong-Han;Kim, Jin-Hoi;Kim, Dong-Ku
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.265-271
    • /
    • 2012
  • HoxB4, a homeodomain-containing transcription factor, is involved in the expansion of hematopoietic stem cells and progenitor cells in vivo and in vitro, and plays a key role in regulating the balance between hematopoietic stem cell renewal and cell differentiation. However, the biological activity of HoxB4 in other cells has not been reported. In this study, we investigated the effect of overexpressed HoxB4 on cell survival under various conditions that induce death, using the Ba/F3 cell line. Analysis of phenotypical characteristics showed that HoxB4 overexpression in Ba/F3 cells reduced cell size, death, and proliferation rate. Moreover, the progression from early to late apoptotic stages was inhibited in Ba/F3 cells subjected to HoxB4 overexpression under removal of interleukin-3-mediated signal, leading to the induction of cell cycle arrest at the G2/M phase and attenuated cell death by Fas protein stimulation in vitro. Furthermore, apoptotic cell death induced by doxorubicin-treated G2/M phase cell-cycle arrest also decreased with HoxB4 overexpression in Ba/F3 cells. From these data, we suggest that HoxB4 may play an important role in the regulation of pro-B cell survival under various apoptotic death environments.

OSTEOMYELITIS OCCURRING LEUKEMIA PATIENT: A CASE REPORT (백혈병 환자에서 발생한 골수염 : 증례보고)

  • Kim, Bong-Gyun;Kim, Su-Gwan;Yeo, Hwan-Ho;Kim, Sang-Ryol
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.3
    • /
    • pp.310-312
    • /
    • 2000
  • Leukemia is a malignancy caused by precursor cells of white blood cell. It is a malignant tumor of hematopoietic organs, characterized by the disorder of hematopoietic function due to the proliferation of immature bone marrow cells or lymphatic cells and by abnormal tissue infiltration of leukemic cells. The major signs of leukemia are caused by the failure of bone marrow function. As the number of red blood cells decreases, anemia is to appear. The number of white blood cells in leukemia is usually increased but immature white blood cells circulating the body has little defense ability, thus become susceptible to infection. 27 year-old female patient who was treated chemotherapy and bone marrow transplantation after diagnosed as chronic myelogenous leukemia(CML) was diagnosed as osteomyelitis in mandible after clinical and dental radiographic film examination. Because of the result of examination, the involved tooth of the patient was extracted accompanied by sequestrectomy and saucerization under general anesthesia. After the patient had long term medication of antibiotics, the lesion was healed. Therefore. author, et al. report this case with literature review.

  • PDF

Optimization of Retrovirus Mediated-Gene Transfer into Hematopoietic Stem Cells (Retrovirus를 이용하여 조혈모세포에 유전자를 전달하기 위한 최적화)

  • Kim, Sang-Gyeong;Seo, Heon-Seok;Lee, Jong-Won;Sin, Dong-Geon;Lee, Jae-Gwan;Kim, Hyeon-Min;Kim, Jae-Sik;Seo, Jang-Su
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.593-599
    • /
    • 1999
  • In this study, optimal conditions to infect CD34 positive cells containing hematopoietic stem cells obtained from cord blood and bone marrow were found using two different retroviral vectors expressing human growth hormone (hGH) and $\beta$-galactosidase. CD34 positive cells were successfully infected with recombinant retroviruses only when the CD34 positive cells were co-cultured with packaging cells secreting recombinant retroviruses. To find the highest infection efficiency for the gene transfer, CD34 positive cells from cord blood were co-cultured with packaging cells secreting recombinant retroviruses encoding E. coli lacZ gene. The highest infection efficiency was obtained when CD34 positive cells were cultured for 3 days, and then co-culturing was done for another 2 days. When CD34 positive cells from bone marrow were co-cultured with packaging cells secreting recombinant retroviruses encoding hGH gene, the maximum amount of hGH was also secreted at the same conditions found above, i.e. 3 days of culture and 2 days of co-culture. These results show that there are optimal conditions for the gene transfer into hematopoietic stem cells regardless of sources of target cells or retroviral vectors used to infect.

  • PDF