• Title/Summary/Keyword: Helper-component protease

Search Result 2, Processing Time 0.061 seconds

Characterization of the in vitro Activities of the P1 and Helper Component Proteases of Soybean mosaic virus Strain G2 and Tobacco vein mottling virus

  • Lim, Hyoun-Sub;Jang, Chan-Yong;Nam, Ji-Ryun;Li, Meijia;Hong, Jin-Sung;Bae, Han-Hong;Ju, Ho-Jong;Kim, Hong-Gi;Ford, Richard E.;Domier, Leslie L.
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.197-201
    • /
    • 2012
  • Potyviruses express their RNA genomes through the production of polyproteins that are processed in host cells by three virus-encoded proteases. Soybean plants produce large amounts of protease inhibitors during seed development and in response to wounding that could affect the activities of these proteases. The in vitro activities of two of the proteases of Soybean mosaic virus (SMV) and Tobacco vein mottling virus (TVMV) were compared in the rabbit reticulocyte lysate in vitro translation system using synthetic RNA transcripts. Transcripts produced from SMV and TVMV cDNAs that included the P1 and helper component-protease (HC-Pro) coding regions directed synthesis of protein products that were only partially processed. Unprocessed poly-proteins were not detected from transcripts that included all of the P1, HC-Pro, P3 and portions of the cylindrical inclusion protein coding regions of either virus. Addition of soybean trypsin inhibitor to in vitro translation reactions increased the accumulation of the unprocessed polyprotein from TVMV transcripts, but did not alter the patterns of proteins produced from SMV. These experiments suggest that SMV-and TVMV-encoded proteases are differentially sensitive to protease inhibitors.

Soybean mosaic virus Infection and Helper Component-protease Enhance Accumulation of Bean pod mottle virus-Specific siRNAs

  • Lim, Hyoun-Sub;Jang, Chan-Yong;Bae, Han-Hong;Kim, Joon-Ki;Lee, Cheol-Ho;Hong, Jin-Sung;Ju, Ho-Jong;Kim, Hong-Gi;Domier, Leslie L.
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.315-323
    • /
    • 2011
  • Soybean plants infected with Bean pod mottle virus (BPMV) develop acute symptoms that usually decrease in severity over time. In other plant-virus interactions, this type of symptom recovery has been associated with degradation of viral RNAs by RNA silencing, which is accompanied by the accumulation of virus-derived small interfering RNAs (siRNAs). In this study, changes in the accumulation of BPMV siRNAs were investigated in soybean plants infected with BPMV alone, or infected with both BPMV and Soybean mosaic virus (SMV) and in transgenic soybean plants expressing SMV helper component-protease (HC-Pro). In many potyviruses, HC-Pro is a potent suppressor of RNA silencing. In plants infected with BPMV alone, accumulation of siRNAs was positively correlated with symptom severity and accumulation of BPMV genomic RNAs. Plants infected with both BPMV and SMV and BPMV-infected transgenic soybean plants expressing SMV HC-Pro exhibited severe symptoms characteristic of BPMVSMV synergism, and showed enhanced accumulation of BPMV RNAs and siRNAs compared to plants infected with BPMV alone and nontransgenic plants. Likewise, SMV HC-Pro enhanced the accumulation of siRNAs produced from a silenced green fluorescent protein gene in transient expression assays, while the P19 silencing suppressor of Tomato bushy stunt virus did not. Consistent with the modes of action of HC-Pro in other systems, which have shown that HC-Pro suppresses RNA silencing by preventing the unwinding of duplex siRNAs and inhibiting siRNA methylation, these studies showed that SMV HC-Pro interfered with the activities of RNA-induced silencing complexes, but not the activities of Dicer-like enzymes in antiviral defenses.