• Title/Summary/Keyword: Helix-turn-helix (HTH) motif

Search Result 5, Processing Time 0.022 seconds

Purification and Characterization of Repressor of Temperate S. aureus Phage Φ11

  • Das, Malabika;Ganguly, Tridib;Chattoraj, Partho;Chanda, Palas Kumar;Bandhu, Amitava;Lee, Chia Yen;Sau, Subrata
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.740-748
    • /
    • 2007
  • To gain insight into the structure and function of repressor proteins of bacteriophages of gram-positive bacteria, repressor of temperate Staphylococcus aureus phage ${\phi}11$ was undertaken as a model system here and purified as an N-terminal histidine-tagged variant (His-CI) by affinity chromatography. A ~19 kDa protein copurified with intact His-CI (~ 30 kDa) at low level was resulted most possibly due to partial cleavage at its Ala-Gly site. At ~10 nM and higher concentrations, His-CI forms significant amount of dimers in solution. There are two repressor binding sites in ${\phi}11$ cI-cro intergenic region and binding to two sites occurs possibly by a cooperative manner. Two sites dissected by HincII digestion were designated operators $O_L$ and $O_R$, respectively. Equilibrium binding studies indicate that His-CI binds to $O_R$ with a little more strongly than $O_L$ and binding species is probably dimeric in nature. Interestingly His-CI binding affinity reduces drastically at elevated temperatures ($32-42^{\circ}C$). Both $O_L$ and $O_R$ harbor a nearly identical inverted repeat and studies show that ${\phi}11$ repressor binds to each repeat efficiently. Additional analyses indicate that ${\phi}11$ repressor, like $\lambda$ repressor, harbors an N-terminal domain and a C-terminal domain which are separated by a hinge region. Secondary structure of ${\phi}11$ CI even nearly resembles to that of $\lambda$ phage repressor though they differ at sequence level. The putative N-terminal HTH (helix-turn-helix) motif of ${\phi}11$ repressor belongs to the HTH -XRE-family of proteins and shows significant identity to the HTH motifs of some proteins of evolutionary distant organisms but not to HTH motifs of most S. aureus phage repressors.

Cloning and Sequencing Analysis of the Repressor Gene of Temperate Mycobacteriophage L1

  • Sau, Subrata;Chattoraj, Partho;Ganguly, Tridib;Lee, Chia Yen;Mandal, Nitai Chandra
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.254-259
    • /
    • 2004
  • The wild-type and temperature-sensitive (ts) repressor genes were cloned from the temperate mycobacteriophage L1 and its mutant L1cIts391, respectively. A sequencing analysis revealed that the $131^{st}$ proline residue of the wild-type repressor was changed to leucine in the ts mutant repressor. The 100% identity that was discovered between the two DNA regions of phages L1 and L5, carrying the same sets of genes including their repressor genes, strengthened the speculation that L1 is a minor variant of phage L5 or vice versa. A comparative analysis of the repressor proteins of different mycobacteriophages suggests that the mycobacteriophage-specific repressor proteins constitute a new family of repressors, which were possibly evolved from a common ancestor. Alignment of the mycobacteriophage-specific repressor proteins showed at least 7 blocks (designated I-VII) that carried 3-8 identical amino acid residues. The amino acid residues of blocks V, VI, and some residues downstream to block VI are crucial for the function of the L1 (or L5) repressor. Blocks I and II possibly form the turn and helix 2 regions of the HTH motif of the repressor. Block IV in the L1 repressor is part of the most charged region encompassing amino acid residues 72-92, which flanks the putative N-terminal basic (residues 1-71) and C-terminal acidic (residues 93-183) domains of L1 repressor.

pVC, a Small Cryptic Plasmid from the Environmental Isolate of Vibrio cholerae MP-1

  • Zhang, Ruifu;Wang, Yanling;Leung, Pak Chow;Gu, Ji-Dong
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.193-198
    • /
    • 2007
  • A marine bacterium was isolated from Mai Po Nature Reserve of Hong Kong and identified as Vibrio cholerae MP-1. It contains a small plasmid designated as pVC of 3.8 kb. Four open reading frames (ORFs) are identified on the plasmid, but none of them shows homology to any known protein. Database search indicated that a 440 bp fragment is 96% identical to a fragment found in a small plasmid of another V. cholerae. Further experiments demonstrated that a 2.3 kb EcoRI fragment containing the complete ORF1, partial ORF4 and their intergenic region could self-replicate. Additional analyses revealed that sequence upstream of ORF1 showed the features characteristic of theta type replicons. Protein encoded by ORF1 has two characteristic motifs existed in most replication initiator proteins (Rep): the leucine zipper (LZ) motif located at the N-terminal region and the alpha helix-turn-alpha helix motif (HTH) located at the C-terminal end. The results suggest that pVC replicates via the theta type mechanism and is likely a novel type of theta replicon.

Isolation and Characterization of Paraquat-inducible Promoters from Escherichia coli

  • Lee, Joon-Hee;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.277-283
    • /
    • 1997
  • Promoters inducible by paraquat, a superocide-generating agent, were isolated from Escherichia coli using a promoter-probing plasmid pRS415 with promoterless lacA gene. Twenty one promoters induced by paraquat were selected and further characterized. From sequence analysis, thirteen of the promoters were mapped to their specific loci on the Escherichia coli chromosome. Several promoters were mapped to the upstream of known genes such as usgl, katG, and mglB, whose relationships with superoxide response have not been previously reported. Other promoters were mapped to the upstream region of unknown open reading frames. Downstream of HC 96 promoter are uncharacterized ORFs whose sequences are homologous to ABC-transporter subunits. Downstream of HC84 promoter is an ORF encoding a transcriptional regulator-like protein, which contains a LysR family-specific HTH (helix-turn-helix) DNA bindign motif. We investigated whether these promoters belong to the soxRS regulon. All promoters except HC96 were found to belong to the soxRS regulon. The HC96 promoter was significantly induced by paraquat in the soxRS deletion mutant strain. The basal transcription level of three promoters (HE43, HC71, HD94) significantly increased at the stationary phase, implying that they are regulated by RpoS. However, paraquat inducibility of all promoters disappeared in the stationary phase, suggesting that SoxRS regulatory system is active only in rapidly growing cells.

  • PDF

Cyclic AMP Receptor Protein Adopts the Highly Stable Conformation at Millimolar cAMP Concentration (높은 cAMP 농도에서 cAMP 수용성 단백질의 열 안정화)

  • Kang, Jong-Baek;Choi, Young
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.751-755
    • /
    • 2003
  • Cyclic AMP receptor proteins(CRP) activate many genes in Escherichia coli by binding of cAMP with not fully known mechanism. CRP existed as apo-CRP in the absence of cAMP, $CRP;(cAMP)_2$$_2$ at low(micromolar) cAMP concentration, or $CRP;(cAMP)_4$ at high(millimolar) concentration of cAMP. This study is designed to measure the thermal stability of S83G CRP, which substituted glycine for serine at amino acid 83 position, with CD spectrapolarimeter at 222nm by the constant elevation of temperature from $20^{\circ]C\; to\; 90^{\circ}C\; at\; 1^{\circ}C/min$. The non-linear regression analysis showed that melting temperatures were 68.4, 72.0, and $82.3^{\circ}C$ for no cAMP, 0.1mM cAMP, and 5mM cAMP, respectively. Result showed the strong thermal stability of CRP by binding of additional cAMP molecules to region between the hinge region and helix-turn-helix(HTH) motif at 5mM cAMP concentration.