• 제목/요약/키워드: Helium gas

검색결과 320건 처리시간 0.022초

$N_2$$SiH_4$ 가스를 사용하여 PECVD로 증착된 Silicon Nitride의 물성적 특성과 전기적 특성에 관한 연구 (Physical properties and electrical characteristic analysis of silicon nitride deposited by PECVD using $N_2$ and $SiH_4$ gases)

  • 고재경;김도영;박중현;박성현;김경해;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.83-87
    • /
    • 2002
  • Plasma enhanced chemical vapor deposited (PECVD) silicon nitride ($SiN_X$) is widely used as a gate dielectric material for the hydrogenated amorphous silicon(a-Si:H) thin film transistors (TFT's). We investigated $SiN_X$ films were deposited PECVD at low temperature ($300^{\circ}C$). The reaction gases were used pure nitrogen and a helium diluted of silane gas(20% $SiH_4$, 80% He). Experimental investigations were carried out with the variation of $N_2/SiH_4$ flow ratios from 3 to 50 and the rf power of 200 W. This article presents the $SiN_X$ gate dielectric studies in terms of deposition rate, hydrogen content, etch rate and C-V, leakage current density characteristics for the gate dielectric layer of thin film transistor applications. Electrical properties were analyzed through high frequency (1MHz) C-V and current-voltage (I-V) measurements. The thickness and the refractive index on the films were measured by ellipsometry and chemical bonds were determined by using an FT-IR equipment.

  • PDF

연속냉각 중 과냉 된 $Pd_{40}Cu_{30}Ni_{10}P_{20}$ 합금 용탕의 실시간 응고거동 관찰 (In Situ Observation of Solidification Behavior in Undercooled $Pd_{40}Cu_{30}Ni_{10}P_{20}$ Alloy Melts during Linear Cooling)

  • 김지훈
    • 한국주조공학회지
    • /
    • 제23권5호
    • /
    • pp.276-285
    • /
    • 2003
  • In the undercooled melt of $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy, the solidification behavior including nucleation and growth of crystals at the micrometer level has been observed in-situ by use of a confocal scanning laser microscope combined with an infrared image furnace. The $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy specimens were cooled from the liquid state to glass transition temperature. 575 K, at various cooling late under a helium gas flow. According to the cooling rate, the morphologies of the solidification front are changed among various types, irregular jog like front, columnar dendritic front, cellular grain, star like shape jog and fine grain, etc. The velocities of the solid-liquid interface are measured to be $10^{-5}{\sim}10^{-8}$ m/s which are at least two orders higher than the theoretical crystal growth rates. Combining the morphologies observed in terms of cooling rates and their solidification behaviors, we conclude that phase separation takes place in the undercooled molten $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy. The continuous cooling transformation (CCT) diagram was constructed from solidification onset time at various linear cooling conditions with different rate. The CCT diagram suggests that the critical cooling rate for glassy solidification is about 1.5 K/s, which is in agreement with the previous calorimetric findings.

중요민속자료(복식)의 보존처리 (The Conservation Treatment for the Important Folklore Materials-Clothes)

  • 한성희;이규식
    • 보존과학연구
    • /
    • 통권14호
    • /
    • pp.94-108
    • /
    • 1993
  • The cultural properties of cloth are of animal orgin (silk), or of vegetable orgin(cotton, hemp, ramie). As clothes are of an orginic material, they were subjected to damage by chemical, phisigical or biological factors, viz, moulds insects, lights, humidity and temperature changes, etc. And these factors promote that clothes generally result from various types of deterioration. In 1992, We were performed the conservation treatments for total 9 pieces of cloth, such as 3 pieces of General PAK SHIN-RYONG(Important Folklore Material No.110) 3 pieces of Madam Jung(Important Folklore Material No.115) and 1 piece of King Se-jo(Important Folklore Material No.219). The procedure of the conservation treatment for clothes describe the following below. 1) The washing and dry-cleaning to remove the contaminated substances from cloth was used 0.2% stearyl potassium soap solution and the mixture solution compound of n-Hexane, C6H14. and n-Decane, C10H22. And after the washing and dry-cleaning, the dry of clothes was carried out in a warm condition. These steps were repeated in 2 times over for each cloth. 2) The repair of clothes was attached the similar textiles to stronger fabric linings by needlework.3) The reprodution was made for cloth of King Se-jo to equalize the type, color, quality and skill of materials. 4) After these above procedures, all clothes fumigated to prevent the biodeterioration by using the mixed gas of methyl bromide and ethylene oxide as insecticide and fungicide. 5) Finally for the purpose to keep in a safety long-term condition, the treated clothes sealed with Biaxially Oriented Polyvinylacohol Film(BO-PVA film) and Helium, purity 99.999%, filled up in sealed BO-PVA film bag.

  • PDF

2 kW급 브레이튼 냉동기용 열역학 사이클 및 극저온 터보 팽창기 설계 (Design of Thermodynamic Cycle and Cryogenic Turbo Expander for 2 kW Class Brayton Refrigerator)

  • 이진우;이창형;양형석;김석호
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.299-305
    • /
    • 2016
  • 초전도 전력 케이블의 상용화 노력에 따라 점차 장선화 되면서, 단위 냉각 시스템당 냉각용량이 큰 대용량 냉동기의 필요성이 증가하고 있다. 국내에서는 극저온 냉동기에 대한 기술 부족으로 인해 현재 극저온 냉동기는 해외 선진사로부터 고가의 비용으로 수입되고 있다. 초전도 전력 케이블의 상용화를 위해서는 대용량 브레이튼 냉동기의 국내 개발이 시급하다. 대용량 브레이튼 냉동기의 구성은 복열식 열교환기, 압축기, 극저온 터보 팽창기로 구성되어 있으며, 냉동기 효율과 가장 직접적인 연관이 있는 것은 극저온 터보 팽창기이다. 극저온 터보 팽창기는 극저온에서 고속으로 회전하면서 고압의 헬륨 혹은 네온 가스를 팽창시켜 온도를 낮추는 역할을 한다. 본 논문에서는 역브레이튼 냉동 사이클을 설계하고, 이에 적합한 극저온 터보 팽창기를 설계하였다.

Characterization of Acetylene Plasma-Polymer Films: Recovery of Surface Hydrophobicity by Aging

  • Kim, Jeong-Ho;Kim, Tae-Hyung;Oh, Jung-Geun;Noh, Seok-Hwan;Lee, Jeong-Soo;Park, Kyu-Ho;Ha, Sam-Chul;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2589-2594
    • /
    • 2009
  • Aging phenomena of plasma polymer films were studied by using the surface analysis techniques of contact angle measurement, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOFSIMS), and atomic force microscopy (AFM). The polymer films were grown on an aluminum substrate by using a plasma polymerization method from a gas mixture of acetylene and helium, and the films were subsequently modified to have a hydrophilic surface by oxygen plasma treatment. Aging of the polymer films was examined by exposing the samples to water and air environments. The aging process increased the hydrophobicity of the surface, as revealed by an increase in the advancing contact angle of water. XPS analysis showed that the population of oxygen-containing polar groups increased due to the uptake of oxygen during the aging, whereas TOF-SIMS analysis revealed a decrease in the polar group population in the uppermost surface layer. The results suggest that the change in surface property from hydrophilic to hydrophobic nature results from the restructuring of polymer chains near the surface, rather than compositional change of the surface. Oxidative degradation may enhance the mobility and the restructuring process of polymer chains.

Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

  • Cheng, Bo;Kim, Young-Jin;Chou, Peter
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.16-25
    • /
    • 2016
  • In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconiumalloy fuel claddingmaterials are rapidlyheateddue to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF) design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI) is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in $1,200-1,500^{\circ}C$ steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstratedcorrosionresistance.Asthese composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Moalloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are discussed in this document. In addition to assisting plants in meeting Light Water Reactor (LWR) challenges, accident-tolerant Mo-based cladding technologies are expected to be applicable for use in high-temperature helium and molten salt reactor designs, as well as nonnuclear high temperature applications.

액화공기(Liquid Air) 예냉기반 수소액화공정 성능 해석 및 최적화 (Performance Evaluation and Optimization of Hydrogen Liquefaction Process Using the Liquid Air for Pre-Cooling)

  • 박성호;안준건;류주열;고아름
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.490-498
    • /
    • 2019
  • The intermittent electric power supply of renewable energy can have extremely negative effect on power grid, so long-term and large-scale storage for energy released from renewable energy source is required for ensuring a stable supply of electric power. Power to gas which can convert and store the surplus electric power as hydrogen through water electrolysis is being actively studied in response to increasing supply of renewable energy. In this paper, we proposed the novel concept of hydrogen liquefaction process combined with pre-cooling process using the liquid air. It is that hydrogen converted from surplus electric power of renewable energy was liquefied through the hydrogen liquefaction process and vaporization heat of liquid hydrogen was conversely recovered to liquid air from ambient air. Moreover, Comparisons of specific energy consumption (kWh/kg) saved for using the liquid air pre-cooling was quantitatively conducted through the performance analysis. Consequently, about 12% of specific energy consumption of hydrogen liquefaction process was reduced with introducing liquid air for pre-cooling and optimal design point of helium Brayton cycle was identified by sensitivity analysis on change of compression/expansion ratio.

중성자 조사에 따른 Ni도금피복재에서의 He발생량평가 (He Generation Evaluation on Electrodeposited Ni After Neutron Exposure)

  • 황성식;권준현;김동진;김성우
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.308-314
    • /
    • 2021
  • Neutron dose level at bottom head of a reactor pressure vessel (RPV) was calculated using reactor vessel neutron transport for a Korean nuclear power plant A. At 34 EFPY with a 40-year (2042) design life after plating repair, irradiation fast neutron effect was 6.6x1015 n/cm2. As helium(He) gas can be generated by Ni only at 1/106 level of 5 × 1021 n/cm2, He generation possibility in the Ni plating layer is very little during 40 years of operation (2042, 34 EFPY). Thermal neutrons can significantly affect the generation of He from Ni metal. At 10 years after a repair, He can be generated at a level of about 0.06 appm, a level that can add general welding repair without any consideration. After 40 years of repair, 9.8 appm of He may be generated. Although this is a rather high value, it is within the range of 0.1 to 10 appm when welding repair can be applied. Clad repair by Ni electroplating technology is expected to greatly improve the operation efficiency by improving the safety and shortening the maintenance period of the nuclear power plant.

Design of BOG re-liquefaction system of 20,000 m3 liquid hydrogen carrier

  • Byeongchang Byeon;Hwalong You;Dongmin Kim;Keun Tae Lee;Mo Se Kim;Gi Dock Kim;Jung Hun Kim;Sang Yoon Lee;Deuk Yong Koh
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.49-55
    • /
    • 2023
  • This paper presents the design of a re-liquefaction system as a BOG (boil-off gas) handling process in liquid hydrogen transport vessels. The total capacity of the re-liquefaction system was assumed to be 3 ton/day, with a BOR (boil-off rate) of 0.2 %/day inside the cargo. The re-liquefaction cycle was devised using the He-Brayton Cycle, incorporating considerations of BOG capacity and operational stability. The primary components of the system, such as compressors, expanders, and heat exchangers, were selected to meet domestically available specifications. Case studies were conducted based on the specifications of the components to determine the optimal design parameters for the re-liquefaction system. This encompassed variables such as helium mass flow rate, the number of compressors, compressor inlet pressure and compression ratio, as well as the quantity and composition of expanders. Additionally, an analysis of exergy destruction and exergy efficiency was carried out for the components within the system. Remarkably, while previous design studies of BOG re-liquefaction systems for liquid hydrogen vessels were confined to theoretical and analytical realms, this research distinguishes itself by accounting for practical implementation through equipment and system design.

가압중수로에서 헬륨-3이 삼중수소의 생성에 미치는 영향평가 (An Assessment on the Contribution of $^3$He to the Tritium Generation in the CANDU PHWR)

  • 곽성우;정범진
    • Journal of Radiation Protection and Research
    • /
    • 제22권2호
    • /
    • pp.119-125
    • /
    • 1997
  • 가압중수로는 감속재와 냉각재로 중수를 채택함으로써 높은 중성자 경제성을 달성하는 대신 중수소의 중성자 포획반응 때문에, 경수로에 비해, 다량의 삼중수소가 발생한다. 한편 원자로심에서, 삼중수소의 ${\beta}$-붕괴결과 발생된 $^3He$는, 열중성자를 포획하여 다시 삼중수소로 변환된다. 중수로에서 삼중수소의 생성에 대한 기존의 계산모형은, $^3He$가 상대적으로 낮은 용해도를 가지므로, 그 기여도를 무시해왔다. 그러나 $^3He$의 중성자 포획단면적은 중수소의 그것에 비해 $1.6{\times}10^7$ 배가 된다. 즉 $^3He$가 중수내에 0.03 ppm만 녹아있다 하더라도 $^3He$에 의해 생성되는 삼중수소의 양은 전체 중수에 의한 삼중수소의 양에 필적하게 된다. 본 연구에서는 월성1호기를 대상으로, 중수로에서 $^3He$가 삼중수소의 생성에 미치는 영향을 평가하였으며 결과를 실측치와 비교하였다. 연구의 결과, 감속재에서는 $^3He$의 용해도가 낮고 $^4He$ Cover gas 때문에 $^3He$의 기여도는 무시할 수 있음이 밝혀졌다. 반면 냉각재의 경우 $^3He$ 삼중수소의 생성에 지대한 영향을 미치는 것으로 나타났다. 또한 본 연구의 계산방법은 원전 운전초기의 냉각재내 삼중수소 생성량은 과대평가 하는 것으로 나타났으나 운전기간이 증가함에 따라 실측치와 잘 일치하는 것으로 나타났다.

  • PDF