• Title/Summary/Keyword: Helium

Search Result 781, Processing Time 0.021 seconds

The Effect of Helium Gas Intake on the Characteristics Change of the Acoustic Organs for Voice Signal Analysis Parameter Application (음성신호 분석 요소의 적용으로 헬륨가스 흡입이 음성 기관의 특성 변화에 미치는 영향)

  • Kim, Bong-Hyun;Cho, Dong-Uk
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.397-404
    • /
    • 2011
  • In this paper, we were carried out experiments to apply parameter of voice analysis to measure changing characteristic articulator according to inhale the helium gas. The helium gas was used to overcome air embolism nitrogen gas to deal a fatal blow in body nitrogen gas by diver. However, the helium gas has been much trouble interpretation about abnormal voice of diver to cause squeaky voice of low articulation. Therefor, we was carried out experiments about pitch and spectrogram measurement, analysis based on to influence in acoustic organs before and after of inhaled helium gas.

Investigation of Oxidation Behavior of Alloy 617 under Air/Helium Environments at 950℃ (니켈기 합금 Alloy 617의 950℃ 대기/헬륨 분위기에서 산화거동 고찰)

  • Jung, Sujin;Lee, Gyeong-Geun;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.218-224
    • /
    • 2018
  • Alloy 617 is a candidate Ni-based superalloy for intermediate heat exchanger (IHX) of a high-temperature gas reactor (VHTR), because of its good creep strength and corrosion resistance at high temperature. Small amount of impurities such as $H_2O$, $H_2$, CO and $CH_4$ are introduced inevitably in helium, as a coolant during operation of a VHTR. Reactions of material and impurities are accelerated with increase of temperature to $950^{\circ}C$ of operating temperature of a VHTR, leading to material corrosion aggravation. In this circumstance, high-temperature corrosion tests were performed at $950^{\circ}C$ in air and impure helium environments, up to 250 hours in this study. Oxidation rate of $950^{\circ}C$ in an air environment was higher than that of impure helium, explained by difference in outer oxide morphology and microstructure as a function of oxygen partial pressure. An equiaxed Cr-rich surface oxide layer was formed in an air environment, and a columnar Cr-rich oxide was formed in an impure helium environment.

Effect of weldability in shielding gases on the GTAW process of austenitic stainless steel (스테인레스강의 GTAW 기법에서 보호가스가 용접성에 미치는 영향)

  • Kim, Dae-Ju;Baek, Ho-Seong;Ryu, Seung-Hyeop;Go, Seong-Hun;Kim, Gyeong-Ju;Kim, Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.63-65
    • /
    • 2006
  • The paper deals with the effect of hydrogen or helium in argon as a shielding gas on GTA welding of austenitic stainless steel. The studies were carried out in GTA(Gas Tungsten Arc) welding with a non-consumable electrode in case with different volume additions of hydrogen or helium to the argon shielding gas, i.e $5%H_2,\;10%H_2$, 30%He and 67%He. The penetration, welding voltage, microstructure and mechanical property were examined. The deepest penetration was obtained from the sample which was welded under shielding gas of $10%H_2$. The studies showed that hydrogen or helium addition to argon changes the static characteristic of the welding arc. The hydrogen or helium addition to argon increases arc power and the quantity of the material melted. The weld metal penetration depth and its width increased with increasing hydrogen or helium content. Additionally, welding voltage increased with increasing hydrogen or helium content.

  • PDF

Helium Leak Test for the PLS Storage Ring Chamber (포항가속기 저장링챔버의 헬륨누설검사)

  • Choi, M.H.;Kim, H.J.;Choi, W.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.31-38
    • /
    • 1993
  • The storage ring vacuum system for the Pohang Light Source (PLS) has been designed to maintain the vacuum pressure of $10^{-10}Torr$ which requires UHV welding to have helium leak rate less than $1{\times}10^{-10}Torr{\cdot}{\ell}/sec$. In order to develop new technique (PLS) welding technique), a prototype vacuum chamber has been welded by using Tungsten Inert Gas welding method and all the welded joints have been tested with a non-destructive method, so called helium leak detection, to investigate the vacuum tightness of the weld joints. The test was performed with a detection limit of $1{\times}10^{-10}Torr{\cdot}{\ell}/sec$ for helium and no detectable leaks were found for all the welded joints. Thus the performance of welding technique is proven to meet the criteria of helium leak rate required in the PLS Storage Ring. Both the principle and the procedure for the helium leak detection are also discussed.

  • PDF

Investigation of helium injection cooling to liquid oxygen chamber (헬륨분사를 통한 액체산소 냉각의 이론적 고찰 및 해석과 시험의 비교)

  • Gwon, O-Seong;Jo, Nam-Gyeong;Jeong, Yong-Gap;Lee, Jung-Yeop
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.134-142
    • /
    • 2006
  • Sub-cooling of cryogenic propellant by helium injection is one of the most effective methods for suppressing bulk boiling and keeping sub-cooled liquid oxygen before rocket launch. In order to design the cooling system, understanding of the limitations of heat and mass transfer is required. In this paper, an analytical model for the helium injection system is presented. This model's main feature is the representation of bubbling system using finite-rate heat transfer and instantaneous mass transfer concept. With this simplified approach, the effect of helium injection to liquid oxygen system under several circumstances is examined. Experimental results along with simulations of single bubble rising in liquid oxygen and bubbling system are presented with various helium injection flow rates, and with change of oxygen chamber pressure.

  • PDF

First-principles investigations on helium behaviors in oxide-dispersion- strengthened nickel alloys with Hf additions

  • Yiren Wang;Fan Jia;Yong Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.895-901
    • /
    • 2023
  • Oxide-dispersion- strengthened nickel alloys with Hf additions are expected to present high temperature mechanical properties and durable helium resistance based on first-principles density functional theory (DFT) calculations. Energetic and charge density evaluations of the helium behaviors were performed in Ni matrix, Y2Hf2O7 oxide and the oxide/matrix interface. With the presence of coherent Y2Hf2O7 in Ni matrix, chances of helium bubbles in Ni can be greatly diminished. The helium atoms shall occupy the interfacial site initially, then diffuse into in the octahedral sites of Y2Hf2O7, and these oxide-captured He atoms prefer to separate individually. Much higher diffusion barrier of He in Y2Hf2O7 than in nickel is related to the strong hybridization between interstitial He-1s and nearest-neighboring O-2p orbitals.

Secondary fragments of proton and helium ion beams in High-Density Polyethylene phantom: A Monte Carlo simulation study

  • M. Arif Efendi;Chee Keat Ying
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1754-1761
    • /
    • 2024
  • In hadrontherapy, secondary fragments are generated by nuclear interactions of the incident heavy ion beam with the atomic nuclei of the target. It is important to determine the yield of production and the dose contribution of these secondary fragments in order to determine the radiobiological effectiveness more accurately. This work aims to fully identify the secondary fragments generated by nuclear interactions of proton and helium (4He) ion beams in a High-Density Polyethylene (HDPE) target and to investigate the dose contributions by secondary fragments. Incident protons with energies of 55.90 MeV and 105.20 MeV and helium ions with energies of 52.55 MeV/u and 103.50 MeV/u in the HDPE phantom have been investigated by the means of Geant4 Monte Carlo (MC) simulations. Simulated results were validated using NASA Space Radiation Laboratory (NSRL) Bragg curves experimental data. The results showed that the dose contribution of secondary fragments deriving from helium ion beams is three times higher than in the case of proton beams. This is due to a higher production of nuclear fragments in the case of helium ion beams. This work contributes to a better understanding of secondary fragments generated by protons and helium ions in the HDPE target.

High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor (초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성)

  • Jung, Sujin;Lee, Gyeong-Geun;Kim, Dong-Jin;Kim, Dae-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.102-112
    • /
    • 2013
  • A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.

Damage studies on irradiated tungsten by helium ions in a plasma focus device

  • Seyyedhabashy, Mir mohammadreza;Tafreshi, Mohammad Amirhamzeh;bidabadi, Babak Shirani;Shafiei, Sepideh;Nasiri, Ali
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.827-834
    • /
    • 2020
  • Damage of tungsten due to helium ions of a PF device was studied. The tungsten was analyzed by SEM and AFM after irradiation. SEM revealed fine bubbles of helium atoms with diameters of a few nanometers, which join and form larger bubbles and blisters on the surface of tungsten. This observation confirmed the results of molecular dynamics simulation. SEM analysis after etching of the irradiated surface indicated cavities with depth range of 35-85 nm. The average fluence of helium ion of the PF device was calculated about 5.2 × 1015 cm-2 per shot, using Lee code. Energy spectrum of helium ions was estimated using a Thomson parabola spectrometer as a function of dN/dE ∝ E-2.8 in the energy range of 10-200 keV. The characteristics of helium ion beam was imported to SRIM code. SRIM revealed that the maximum DPA and maximum helium concentration occur in the depth range of 20-50 nm. SRIM also showed that at depth of 30 nm, all of the tungsten atoms are displaced after 20 shots, while at depth of higher than 85 nm the destruction is insignificant. There is a close match between SRIM results and the measured depths of cavities in SEM images of tungsten after etching.

High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor (초고온가스로 헬륨 분위기에서 Alloy 617의 고온 부식 거동)

  • Lee, Gyeong-Geun;Jung, Sujin;Kim, Daejong;Jeong, Yong-Whan;Kim, Dong-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.659-667
    • /
    • 2012
  • Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at $850^{\circ}C-950^{\circ}C$ in a helium environment containing the impurity gases $H_2$, CO, and $CH_4$, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high-temperature corrosion behavior of Alloy 617 for the VHTR application.