• Title/Summary/Keyword: Helicopter Simulator

Search Result 42, Processing Time 0.025 seconds

Flight Envelope Load Factor Limit Logic Design for Helicopter Fly-By-Wire Controller (전자식 조정장치 헬리콥터의 하중 비행영역 제한 로직 설계)

  • Choi, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.159-164
    • /
    • 2016
  • This paper reports the load factor logic design for a fly-by-wire helicopter flight envelope protection. As a helicopter is very complex system with a rotor, fuselage, engine, etc., there are many constraints on the flight region. Because of these constraints, pilots should consider them carefully and have a heavy workload, which causes controllability degradation. In this respect, automatic logic is needed to free the pilot from these considerations. As one of these logics, the flight envelope protection logic for the load factor of a FBW helicopter was designed. The flight to exceed the load factor is caused by an abrupt pitch cyclic stick change. In this scheme, the load factor limit logic was added between the pilot stick command block and pitch attitude command block. From the current load value, the available attitude range was calculated dynamically and simulated on the helicopter simulator model to verify the performance. A comparison of the simulation results at the hovering and forward speed region with and without applying the load limiting logic showed that the load factor limit was exceeded more than 20% when the logic was not applied, whereas with the load factor limit logic the load factor was within the limit. In conclusion, a dynamically allocated limitation logic to helicopter FBW controller was verified by simulation.

A Study on the Model of Thermal Plume Flow in the Forest Fire (산불에 의한 열적상승유동 해석에 관한 연구)

  • Park, Jun-Sang;Ji, Young-Moo;Jun, Hyang-Sig;Jeon, Dae-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • A study is made of thermal plume flow model for the development of helicopter simulator over the forest fire. For the numerical analysis, a line fire model with Boussinesq fluid approximation, which is idealized by the spreading shape of forest fire on the ground, is adopted. Comparing full 2-D and 3-D numerical solutions with 2-D similarity solution, it has been built a new model that is useful for temperature prediction along the symmetric vertical axis of fire model for both cases of laminar and turbulent flow.

Threat Unification using Multi-Sensor Simulator of Battlefield Helicopter and Its Implementation (전장 헬기의 다중센서 시뮬레이터를 통한 위협통합 및 구현)

  • Park, Hun-Woo;Kang, Shin-Bong;Noh, Sang-Uk;Jeong, Un-Seob
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.35-49
    • /
    • 2009
  • In electronic warfare settings, battlefield helicopters identify various threats based upon threat data, which are acquired using their multi-sensors of aircraft survivability equipment (ASE). To continually function despite of potential threats and successfully execute their missions, the battlefield helicopters have to repeatedly report threats in simulated battlefield situations. Toward this ends, the paper presents threat unification using multi-sensor simulator and its implementation. The simulator consists of (1) threat attributes generator, which models threats against battlefield helicopters and defines their specific attributes, (2) threat data generator, which generates threats, being similar to real ones, using normal, uniform, and exponential distributions, and (3) graphic display for threat analysis and unification, which shows unified threat information, for example, threat angle and its level. We implement a multi-sensor threat simulator that can be repeatedly operable in various simulated battlefield settings. Further, we report experimental results that, in addition to tangibly modeling the threats to battlefield helicopters, test the capabilities of threat unification using our simulator.

  • PDF

A Development of the DIRCM Effectiveness Analysis Simulator based on DEVS (DEVS 기반 DIRCM 효과도 분석 시뮬레이터 개발)

  • Shin, Baek-Cheon;Hur, Jang-Wook;Kim, Tag-Gon;Kim, Mi-Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • we analyzed simulation of the effectiveness for one or two DIRCM on a helicopter. The survival rate of helicopter followed increase of the deception rate of DIRCM. When the deception rate was over 70% at 100% detection rate, the survival rate was 10~30% when one DIRCM was installed and the survival rate was 70~80% when two DIRCMs were installed. When the detection rate was over 70% at 100% deception rate the survival rate was 10~30% case of one DIRCM was installed. survival rate was 20~30% when two were installed. Survival rate of 70~90% was observed with one DIRCM when the deception rate and detection rate were 100%, and 100% with two DIRCMs.

Study of Engine Control/Performance Modeling for Helicopter Simulator (헬리콥터 시뮬레이터용 엔진 제어 및 성능 모델링 기법 연구)

  • Jun, Hyang-Sig;Jeon, Dae-Keun;Choi, Hyoung-Sik;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.183-188
    • /
    • 2008
  • Engine control/performance model for helicopter simulator is one of the most important models which affect flight performance and handling quality. It is typical to develop the model based on the raw data and models from the engine designers/manufacturers. The approaches in this study were to develop the basic model based on the available resources and to tune and verify it based on the ground/flight test results. The maintenance manuals of TB3-117 which is installed in KA-32T were reviewed and the components to be simulated for the engine control model were categorized and modeled. Piece-wise linear modeling method was used for the engine performance model. The engine performance data in the engine maintenance manuals were incorporated into the engine steady state performance tables, which were incorporated with the transfer functions for the dynamic performance. Engine control/performance model was compared and tuned with the ground/flight test results. It was verified that the fidelity of the model was within the tolerances in FAA AC120-63.

  • PDF

Study of Engine Control/Performance Modeling for Helicopter Simulator (헬리콥터 시뮬레이터용 엔진 제어 및 성능 모델링 기법 연구)

  • Jun, Hyang-Sig;Jeon, Dae-Keun;Choi, Hyoung-Sik;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2239-2246
    • /
    • 2008
  • Engine control/performance model for helicopter simulator if one of the most important models which affect flight performance and handling quality. It is typical to develop the model based on the raw data and models from the engine designers/manufacturers. The approaches in this study were to develop the basic model bated on the available resources and to tune and verify it based on the ground/flight test results. The maintenance manuals of TB3-117 which is installed in KA-327 were reviewed and the components to be simulated for the engine control model were categorized and modeled. Piece-wise linear modeling method was used for the engine performance model. The engine performance data in the engine maintenance manuals were incorporated into the engine steady state performance tablet, which were incorporated with the transfer functions for the dynamic performance. Engine control/performance model was compared and tuned with the round/flight test results. It was verified that the fidelity of the model was within the tolerances in FAA AC120-63.

A Design of Handling Quality Assessment Environment Based on FLIGHTLAB Model Using Legacy Simulator (레거시 시뮬레이터를 활용한 FLIGHTLAB 모델 기반의 조종성 평가 환경 설계 연구)

  • Yang, Chang Deok;Lee, Seung Deok;Cho, Hwan Heui;Jung, Dong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.530-536
    • /
    • 2016
  • The handling quality simulator including high fidelity flight mechanics model is indispensable component to design and verify the flight control system. Korea Aerospace Industries, LTD. (KAI) has been performing LCH (Light Civil Helicopter) core technology development program regarding automatic flight control system (AFCS) software development. And KAI has been developing flight mechanics model using FLIGHTLAB to design and evaluate the AFCS flight control law. This paper presents the handling quality assessment environment development results through the combining FLIGHTLAB with a legacy simulator. And this paper details the FLIGHTLAB model, application development process and FLIGHTLAB interface design. The developed handling quality assessment environment has been demonstrated with the ADS-33E hover and pirouette MTE (Mission Task Element) maneuver simulation.

Error Rate and Flight Characteristics of Rotary-Wing Aircraft Pilots Under Low Visibility Conditions (저시정 조건에서 회전익 항공기 조종사 에러 발생율 및 비행특성)

  • Se-Hoon Yim;Young Jin Cho
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.60-67
    • /
    • 2024
  • The majority of civil aviation accidents are caused by human factors, and especially for rotary-wing aircraft, accidents often occur in situations where pilots unexpectedly or unintentionally enter into instrument meteorological conditions (IIMC). This research analyzed the error rates of rotary-wing aircraft pilots under low visibility conditions from various angles to gain insights into flight characteristics and to explore measures to reduce accidents in IIMC situations. The occurrence rate of errors by pilots under low visibility conditions was examined using a flight simulator equipped with motion, with 65 pilots participating in the experiment. Flight data obtained through the experiment were used to aggregate and analyze the number of errors under various conditions, such as reductions in flight visibility, the presence or absence of spatial disorientation, and the pilot's qualifications. The analysis revealed peculiarities in flight characteristics under various conditions, and significant differences were found in the rate of error occurrence according to the pilot's qualification level, possession of instrument flight rules (IFR) qualifications, and during different phases of flight. The results of this research are expected to contribute significantly to the prevention of aircraft accidents in IIMC situations by improving pilot education and training programs.

Attitiude Control of Helicopter Simulator System using A Hybrid GA-PID WAVENET Controller (Hybrid GA-PID WAVENET 제어기를 이용한 모형 헬리콥터 시스템의 자세 제어)

  • 박두환;성상규;이오걸;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.168-171
    • /
    • 2004
  • 본 논문에서는 대표적인 비선형 동특성을 가지는 실제 헬리콥터의 회전 및 자세 운동을 근사화한 모형 헬리콥터의 시스템을 소개하고 이 시스템의 정지 자세 제어를 위하여 WAVENET 제어기와 PID 제어기를 설계하였으며, WAVENET의 신경망 연결 가중치(weight) 및 웨이브렛의 신축 및 이동변수와 PID 제어기의 최적 이득 계수를 GA를 사용하여 조정되도록 하였다. 그리고 과도 응답 특성이 우수한 WAVENET 제어기와 정상 상태 특성이 우수한 GA-PID 제어기를 Hybrid 형태로 구성한 Hybrid GA-PID WAVENET 제어기를 비선형 시스템인 모형 헬리콥터 시스템에 적용하여 제안한 제어기 설계 알고리즘의 유효성과 우수성을 입증하고자 한다.

  • PDF