• Title/Summary/Keyword: Helicopter Noise

Search Result 123, Processing Time 0.027 seconds

Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor Systems (무베어링 헬리콥터 로터 시스템의 동특성 해석)

  • Kee, Young-Jung;Yun, Chul-Yong;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.52-56
    • /
    • 2011
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000lb class helicopter. Flexbeam and torque tube can be considered as the key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

  • PDF

Bearingless Rotor Hub Composite Component Fatigue Analysis of Utility Helicopter to perform the Basic Mission (기본임무를 수행하는 기동헬기에 적용될 무베어링 허브 복합재 구성품 피로수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-kwan;Kim, Seung-ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.383-389
    • /
    • 2013
  • Rotor system is a very important part which produces lift, thrust and control force in helicopter. Component of rotor system must endure various flight load for the required life. In helicopter rotor system, bearingless rotor system is the highest technology rotor system compare with articulated and hingeless rotor system. Baaringless rotor system is not include mechanical flap hinge, lag hinge and pitch bearing. Bearingless rotor component flexbeam which made by composite material has conduct hinge and bearing role instead of mechanical flap hinge, lag hinge and pitch bearing. These characteristics has less part number and lass weight than others. In this paper, conduct safe life analysis of bearingless composite component flexbeam and torque tube applying to utility helicopter load condition.

  • PDF

Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor System (무베어링 헬리콥터 로터 시스템의 동특성 해석)

  • Kee, Young-Jung;Yun, Chul-Yong;Kim, Doeg-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.187-192
    • /
    • 2012
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5 m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000 lb class helicopter. Flexbeam and torque tube can be considered as key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

A Study on Adjustment Optimization for Dynamic Balancing Test of Helicopter Main Rotor Blade (헬리콥터 주로터 블레이드 동적밸런싱 시험을 위한 조절변수 최적화 연구)

  • Song, KeunWoong;Choi, JongSoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.736-743
    • /
    • 2016
  • This study describes optimization methods for adjustment of helicopter main rotor tracking and balancing (RTB). RTB is a essential process for helicopter operation and maintenance. Linear and non-linear models were developed with past RTB test results for estimation of RTB adjustment. Then global and sequential optimization methods were applied to the each of models. Utilization of the individual optimization method with each model is hard to fulfill the RTB requirements because of different characteristics of each blade. Therefore an ensemble model was used to integrate every estimated adjustment result, and an adaptive method was also applied to adjustment values of the linear model to update for next estimations. The goal of this developed RTB adjustment optimization program is to achieve the requirements within 2 run. Additional tests for comparison of weight factor of the ensemble model are however necessary.

EXAMINATIONS OF METHOD FOR CALCULATING LAE OF HELICOPTER NOISE

  • Matsui, Toshihito;Park, Young-Min;Takagi, Koichi
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.668-673
    • /
    • 1994
  • The paper presents a simple method for calculating the sound exposure level (LAE) of helicopter noise. It is assumed that a helicopter is a nondirective point source and that A-weighted sound pressure level at an observation point can be expressed by an A-weighted power level and a simple function of the distance from the helicopter. We derived a formula for LAE by integrating the sound energy along a finite or an infinite flight segment. The values calculated form the formula agree well with the results of test flights in which three types of helicopters each were operated in three moving modes of approach, takeoff and level flyover.

  • PDF

BLADE PLANFORM OPTIMIZATION FOR HSI NOISE REDUCTION OF HELICOPTER (헬리콥터의 고속충격소음 감소를 위한 블레이드 평면형상 최적화)

  • Chae, Sang-Hyun;Yang, Choong-Mo;Jung, Shin-Kyu;Aoyama, Takashi;Obayashi, Shigeru;Yee, Kwang-Jung
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.53-61
    • /
    • 2009
  • The objective of this research is to design blade planform to reduce high speed impulsive(HSI) noise from a non-lifting helicopter rotor using CFD method and optimization techniques. As for the aero-acoustic analysis, CFD technique for aerodynamic analysis and Kirchhoff's method for the acoustic analysis were used. As for the optimization method, Kriging-based genetic algorithm(GA) model as a high-fidelity optimization method was chosen. Design variables and constraints are determined for arbitrary blade planform. The result shows that the optimized blade planform with high swept-back and taper ratio can reduce HSI noise by suppressing generation of the strong shock wave on blade surface and propagation of the noise to the farfield flow region.

Improvement and Operation of a Helicopter Tail-Fan Performance Test System (헬리콥터 테일팬 시험장치 개조 및 운용)

  • Lee, Je-Dong;Song, Keun-Woong;Kang, Hee-Jung;Sim, Jung-Wook;Kim, Seung-Bum
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.41-44
    • /
    • 2005
  • This paper described improvement and operation of a 'Tail-Fan' anti-torque performance test system KARI (Korea Aerospace Research Institute) developed a 'Tail-Fan' anti-torque system of a helicopter and a performance test-rig to test the performance of the Tail-Fan. The test-rig was improved for full rotating test in 4300rpm(100%). Machinery and hydraulic parts ware changed to reduce vibration and to increase safety. To find the operation rotating speed for the performance test, vibration test were carried out rising accelerometers on tail gear box. The performance test conditions of the Tail-Fan to avoid a resonance were found from vibration test results. The Tail-Fan operation tests were performed safely frier to carry out performance test.

  • PDF

A Numerical Analysis on the Vibration Characteristics of Rotating Composite Blades (회전하는 복합재료 블레이드의 진동특성에 대한 수치해석)

  • Kee, Young-Jung;Song, Keun-Woong;Kim, Deog-Kwan;Shim, Jeong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.300-303
    • /
    • 2006
  • The rotor blade of a helicopter is the key structural units and provides three components such as vertical lifting force, horizontal propulsive force and control force. With advancements in aerospace technology, composite materials have been widely used in lightweight structures. In addition, composites show great potential on the design of rotor blades due to the advantages of strength, durability and weight of the materials. In the operational condition of a helicopter, it is required the vibration characteristics of the rotating blades for avoiding resonance and analysis of efficient performance prediction et al. In this study, the CAMRAD-II is used for analyzing the vibration characteristics of rotating composite blades. The effects of rotating speed and collective angles are investigated. Also, the numerical results are compared with experimental data.

  • PDF

Basic Properties Test and Non-rotating Dynamic Test of Helicopter Rotor (헬리콥터 로터 블레이드의 기본 물리량 및 비회전 동특성 시험)

  • Yun, Chul Yong;Kim, Taejoo;Kee, Young-Jung;Sim, Heon-Su;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.103-108
    • /
    • 2013
  • This paper describes basic properties tests and non-rotating dynamic test for rotor blade, flexbeam, and torque tube of which bearingless rotor in helicopter consists. A basic properties test are bending and twist test to find the flap stiffness, lag stiffness, and twist stiffness of specimens. The purpose of dynamic test is to find natural frequencies and modes in non-rotating state. The test results are used to update the analysis model. The updated analysis results using rotorcraft comprehensive code match the tests quite well. The updated model input based on the tests will be utilized to analysis the conditions of rotating whirl tower test before the whirl test and will be compared with the whirl tower test results.

  • PDF

Development of a Helicopter Rotor Test Rig and Measurement of Aeroacoustic Characteristics (헬리콥터 로터 시험장치의 개발 및 공력소음특성의 측정)

  • Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.10-16
    • /
    • 2004
  • In this paper the aeroacoustic characteristics of a helicopter main rotor system is measured by using a pair of scaled rotor blades. A low noise rotor test jig is developed for noise measurement and the rotational speed, thrust and torque are measured simultaneously in order to match the aerodynamic conditions with the full scale rotor. The accuracy of the force measurement device was checked through a calibration procedure. The measured thurst and torque with a 1.2m rotor are compared to the results of analytical prediction and showed that the thrust data at various rotational speed followed the prediction relatively well, but the torque data considered less accurate. It is also found that the background noise level of the test rig is sufficiently low, and the measured noise level from the rotor can be scaled with rotor tip speed. However, the Mach number dependancy and the directivity changes depend on the noise source characteristics.