• 제목/요약/키워드: Helicopter Flight Control

검색결과 121건 처리시간 0.027초

헥사로터형 무인기의 모델링과 P-PD기반 비행성능평가 (Dynamic Model and P-PD Control based Flight Performance Evaluation for Hexa-Rotor Type UAV)

  • 진태석
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1074-1080
    • /
    • 2015
  • In the last decades, the increasing interest in unmanned aerial vehicle(UAV) for military, surveillance, and rescue applications made necessary the development of flight control theory and body structure more and more efficient and fast. In this paper, we describe the design and performance of a prototype hexarotor UAV platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, dynamic modeling and simulation in the hexarotor helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(ARM-cortex) board. The P-PD control algorithm was used to control the hexarotor. We used the Matlab software to help us to tune the P-PD control parameters for quick response and minimizing the fluctuation. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

헬리콥터 시뮬레이터 기술개발현황 (Development Status of Helicopter Simulator Technology)

  • 서강호;김윤수
    • 한국항공우주학회지
    • /
    • 제47권6호
    • /
    • pp.446-459
    • /
    • 2019
  • 본 논문은 헬리콥터 시뮬레이터의 기술적 현황과 향후 전망을 살펴보는 것에 목적이 있다. 서론에서는 시뮬레이터의 개념과 헬리콥터를 중심으로 한 비행 시뮬레이터의 개발 역사에 대해 간략하게 정리하였다. 본론에서는 헬리콥터 시뮬레이터의 기술현황과 신뢰성 평가를 위한 인증방안으로 미 연방 항공국(FAA)과 유럽 항공 안전청(EASA) 인증을 소개했으며, 또한 비행 시뮬레이터의 신뢰성을 높이기 위해 해결해야할 문제점들과 향후 발전 방향에 대해 논의하였다.

Development of Flight Control System and Troubleshooting on Flight Test of a Tilt-Rotor Unmanned Aerial Vehicle

  • Kang, Youngshin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.120-131
    • /
    • 2016
  • The full results of troubleshooting process related to the flight control system of a tilt-rotor type UAV in the flight tests are described. Flight tests were conducted in helicopter, conversion, and airplane modes. The vehicle was flown using automatic functions, which include speed-hold, altitude-hold, heading-hold, guidance modes, as well as automatic take-off and landing. Many unexpected problems occurred during the envelope expansion tests which were mostly under those automatic functions. The anomalies in helicopter mode include vortex ring state (VRS), long delay in the automatic take-off, and the initial overshoot in the automatic landing. In contrast, the anomalies in conversion mode are untrimmed AOS oscillation and the calibration errors of the air data sensors. The problems of low damping in rotor speed and roll rate responses are found in airplane mode. Once all of the known problems had been solved, the vehicle in airplane mode gradually reached the maximum design speed of 440km/h at the operation altitude of 3km. This paper also presents a comprehensive detailing of the control systems of the tilt-rotor unmanned air vehicle (UAV).

Inflow Prediction and First Principles Modeling of a Coaxial Rotor Unmanned Aerial Vehicle in Forward Flight

  • Harun-Or-Rashid, Mohammad;Song, Jun-Beom;Byun, Young-Seop;Kang, Beom-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.614-623
    • /
    • 2015
  • When the speed of a coaxial rotor helicopter in forward flight increases, the wake skew angle of the rotor increases and consequently the position of the vena contracta of the upper rotor with respect to the lower rotor changes. Considering ambient air and the effect of the upper rotor, this study proposes a nonuniform inflow model for the lower rotor of a coaxial rotor helicopter in forward flight. The total required power of the coaxial rotor system was compared against Dingeldein's experimental data, and the results of the proposed model were well matched. A plant model was also developed from first principles for flight simulation, unknown parameter estimation and control analysis. The coaxial rotor helicopter used for this study was manufactured for surveillance and reconnaissance and does not have any stabilizer bar. Therefore, a feedback controller was included during flight test and parameter estimation to overcome unstable situations. Predicted responses of parameter estimation and validation show good agreement with experimental data. Therefore, the methodology described in this paper can be used to develop numerical plant model, study non-uniform inflow model, conduct performance analysis and parameter estimation of coaxial rotor as well as other rotorcrafts in forward flight.

국내 헬리콥터 조종사 인적오류 사고 분류 및 분석 (Classification and Analysis of Human Error Accidents of Helicopter Pilots in Korea)

  • 유태정;권영국;송병흠
    • 한국항공운항학회지
    • /
    • 제28권4호
    • /
    • pp.21-31
    • /
    • 2020
  • There are two to three helicopter accidents every year in Korea, representing 5.7 deaths per 100,000 flights. In this study, an analysis was conducted on helicopter accidents that occurred in Korea from 2005 to 2017. The accident analysis was based on the aircraft accident and incident report published by the Aircraft and Railway Accident Investigation Board. This Research analyzed the characteristics of accidents occurring in Korea caused by human error by pilots. Accident analysis was done by classifying the organization, flight mission, aircraft class, flight stage, accident cause, etc. Pilot's huan error was classified as Skill-based error, decision error and perceptual error in accordance with the HFACS taxonomy. The accidents caused by pilot's human error were classified into five categories: powerlines collision, loss of control, fuel exhaustion, unstable approach to reservoir, and elimination of tail rotor.

Design and Simulation of Integral Twist Control for Helicopter Vibration Reduction

  • Shin, Sang-Joon;Cesnik Carlos E. S.;Hall Steven R.
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.24-34
    • /
    • 2007
  • Closed-loop active twist control of integral helicopter rotor blades is investigated in this paper for reducing hub vibration induced in forward flight. A four-bladed fully articulated integral twist-actuated rotor system has been designed and tested successfully in wind tunnel in open-loop actuation. The integral twist deformation of the blades is generated using active fiber composite actuators embedded in the composite blade construction. An analytical framework is developed to examine integrally twisted helicopter blades and their aeroelastic behavior during different flight conditions. This aeroelastic model stems from a three-dimensional electroelastic beam formulation with geometrical-exactness, and is coupled with finite-state dynamic inflow aerodynamics. A system identification methodology that assumes a linear periodic system is adopted to estimate the harmonic transfer function of the rotor system. A vibration minimizing controller is designed based on this result, which implements a classical disturbance rejection algorithm with some modifications. Using the established analytical framework, the closed-loop controller is numerically simulated and the hub vibratory load reduction capability is demonstrated.

자유 비행체의 3자유도 자세제어에 관한 연구 (A Study on the 3-DOF Attitude Control of Free-Flying Vehicle)

  • 박덕기;박문수;김병두;정원재;조성민;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.92-92
    • /
    • 2000
  • Helicopter offer the signigicant advantage over traditional air vehicles, in that the provide extended maneuverability, such as vertical climb, hovering, longitudinal and lateral flight, hovering turns and bank turns. But helicopter have the strong cross couplings and nonlinearities for each lateral, longitudinal and rotational motion mutually. However, it is possible to ignore this couplings for the hovering condition, so using this properties we can control the attitude of helicopter. That is, by implementing the dynamic of each rotational axis(roll, pitch, yaw) of independent mutually, 3-DOF(degree of Freedom) attitude control for the helicopter is possible. In this paper, we identify decoupled input-coutput relations of each three rotational axis about the helicopter mounted on the 3-DOF gimbal by experiment, and on these basis implement 3-DOF attitude controller using the PID control method.

  • PDF

Autonomous Control System of Compact Model-helicopter

  • Kang, Chul-Ung;Jun Satake;Takakazu Ishimatsu;Yoichi Shimomoto;Jun Hashimoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.95-99
    • /
    • 1998
  • We introduce an autonomous flying system using a model-helicopter. A feature of the helicopter is that autonomous flight is realized on the low-cost compact model-helicopter. Our helicopter system is divided into two parts. One is on the helicopter, and the other is on the land. The helicopter is loaded with a vision sensor and an electronic compass including a tilt sensor. The control system on the land monitors the helicopter movement and controls. We firstly introduce the configuration of our helicopter system with a vision sensor and an electronic compass. To determine the 3-D position and posture of helicopter, a technique of image recognition using a monocular image is described based on the idea of the sensor fusion of vision and electronic compass. Finally, we show an experiment result, which we obtained in the hovering. The result shows the effectiveness of our system in the compact model-helicopter.

  • PDF

헬리콥터 비행 제어시스템의 피드백 제어 이득 한계에 대한 로터 플랩 동역학의 영향성 분석 (Analytical Investigation of the Influence of Rotor Flap Dynamics on Helicopter Flight Control System Feedback Gain Limit)

  • 양창덕;이승덕;정동우
    • 한국항공우주학회지
    • /
    • 제48권3호
    • /
    • pp.217-224
    • /
    • 2020
  • 고-대역폭(High Bandwidth)의 헬리콥터 반응특성을 위한 높은 수준의 피드백 제어 게인의 사용은 로터 모드에 의해 항공기의 불안정성이 증가한다. 본 논문에서는 EC155B1 헬리콥터 모델링을 수행하고 이를 이용하여 롤 축의 각속도 및 자세 피드백 게인의 증가에 따른 항공기의 안정성을 분석하였다. 그리고 로터 플랩 모드에 의해 제한되는 롤 축 각속도 및 자세 피드백 제어 게인을 검토하였다. 또한 노이즈 제거 필터의 사용으로 비행 제어시스템의 위상지연이 증가 시 헬리콥터 안정성에 영향을 주는 피드백 제어 게인의 한계를 검토하였다.

Design of hovering flight controller for a model helicopter

  • Shim, Hyeoncheol;Lee, Ho-Eun;Park, Hyunsik;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.344-348
    • /
    • 1992
  • This paper describes a procedure to design a hovering flight controller for a model helicopter using LQG theory. Parameters of the model helicopter in hover are obtained using direct measurements and calculations proposed by other research. A feedback co is by using digital LQG theory. First, a full state feedback controller is designed to the discretized system taking desirable transient response and other assumptions into account. Then a full-state estimator is designed and revised until desirable response is obtained while global stability is maintained. Performance of the controller is tested by computer simulations. Experiments have been performed using a 3-degree-of-freedom gimbal that holds the model helicopter, and the controller exhibited stable hover capability.

  • PDF