• Title/Summary/Keyword: Helical Nozzle

Search Result 11, Processing Time 0.02 seconds

A Study on the Wide Reach Nozzle of Sprayer (V) -The Long Range Nozzle- (휴반용 분무기의 Nozzle에 관한 연구(V) -원거리용 Nozzle-)

  • 옹장우;이상우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3991-4000
    • /
    • 1975
  • It is the aim of this study to investigate the influence of the factors in the sprayer nozzle for the travelling distance and to get nozzle design data in relation to the nozz1e with and without swirl plate. The factors of sprayer nozzle are composed of the spraying pressure, the helical angle of swirl plate, the helical groove depth of swirl plate, the distance of vortex chamber the slope of nozz1e cap, the curvature of nozzle cap and the hole diameter of nozz1e cap. The travelling distance and the size of sprayed particle are experimeted indoors by the factorial arrange-ment according to the 5 each level of the above factors. The results of this stupy are summarized as follows; 1. In the nozzle with swirl p1ate there were remarkable significance among factors each other, while without swirl plate were no significance. 2. The helical angle and groove depth in the nozzle with swirl plate were the highest effective factors. The effect of helical angle was very remarked in the quadratic curve with minium value. 3. The correlation betweenthe travelling distance and the sprayed particle size was no high and under 250 micron in the case with swirl plate, and there was higher correlation in the case without swirl plate. 4. The new ideal development of the swirl plate using of the most effective helical angle and groove depth will probably show the possiblities to make effective travelling distance over 8 meters and more over and to make average particle diameter under 300 micron.

  • PDF

A Numerical Study on the Effect of Pitch Angle of Helical Nozzle on the Vortex Tube Performance Characteristics (헬리컬 노즐의 피치각에 따른 볼텍스 튜브의 성능특성에 관한 연구)

  • Oh, Yeong Taek;Kim, Kuisoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • In this paper, a numerical analysis was performed to investigate the effect of the pitch angle of a helical nozzle on the performance characteristics of a vortex tube. Three-dimensional numerical simulation has been performed with standard $k-{\varepsilon}$ turbulence model by using FLUENT 13.0. The effect of the pitch angle of helical nozzle was described in term of ${\beta}$. A CFD analysis was performed on ${\beta}=0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. In order to realize the influence of ${\beta}$ on performances of the vortex tube. Computation results were expressed by the ${\beta}-{\Delta}T_{h,c}$ graph and radial profiles of axial velocity and swirl velocity. The results showed that ${\beta}$ which improves energy separation capacity of vortex tube was $5^{\circ}$ at ${\alpha}=0.33$, 0.5 and $10^{\circ}$ at ${\alpha}=0.33$. Besides, It was confirmed that the results were closely related to axial velocity and swirl velocity.

A Study on the Wide Reach Nozzle of Sprayer(I) (휴반용 분무기의 Nozzle에 관한 연구(I))

  • 원장우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.2
    • /
    • pp.2980-3001
    • /
    • 1973
  • Nozzle is a part of sprayer and is consists of several elements; swirl plate, vortexchamber, cap and body. The travelling distance of sprayed particles is important in the wide reach nozzle. The factors to influence the travelling distance of the sprayed particles may be the helical angle of swirl plate, the distance of vortex hamber, the slope and the size of cap hole. The study was conducted to examine the effects of these factors on the travelling distance. The results of this study are summarized as follows; 1) There was higher positive correlation(+0.96) between the maximum travelling distance for which amount of sprayed particles was 5cc/cm min. and centro-position of the travelling distance. 2) There was a higher positive correlation(+0.85) between total discharge of sprayed particles and the centro-position of the travelling distance. 3) Main effects and interaction effects of helical angle, pressure, vortex chamber distance and cap slope were significantly affected the travelling distance of sprayed particles. 4) Main effects of helical angle, pressure and cap slope were especially highly significant to influence the travelling disance. 5) Helical angle, pressure, vortex chamber distance and cap slope influenced spraying forward velocity of dise hole, among which cap slope and pressure of nozzle was the most important factors. 6) Effect of change of helical angle on the travelling distance of sprayed particles, was generally a quadratic, the least value of the distance being showed about $45^{\circ}$ and the largest at about $15^{\circ}\;and\;55^{\circ}$, the decreasing rate of the change between $15^{\circ};and\;25^{\circ}$ was very small. 7) Effect of change of pressure on the travelling distance sprayed particles was generally a linear, the increasing rate of the charge was about 1.68, which was the most effective compared to the change of the other factors. 8) Effect of change of vortex chamber distance on the spraying distance was also generally a linear, the increasing rate being about 0.16, which was the least effective. 9) Effect of change of cap slope on the travelling distance was also generally a linear, the increasing rate was about 0.61 and its effect was about medium.

  • PDF

Investigation of Changes in Injection Conditions Due to the Difference of Plane and Spiral Surface in Micro Particle Blasting (미세입자 분사가공 시 평면과 나선형 곡면 차이에 의한 분사조건 변화 연구)

  • Choi, Sung-Yun;Lee, Eun-Ju;Lee, Sea-Han;Kwon, Dae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.53-58
    • /
    • 2020
  • This study analyzed the surface roughness of the fine particle spraying process in the plane and the surface roughness by the factors in the fine particle spraying process on the helical surface is analyzed. Finally, the surface fine particle spraying process and the helical curved surface fine particle Analyze the difference in injection conditions of the injection process. Key process variables are particle type, nozzle diameter, and pressure. The remaining conditions are fixed values of. A total of 32 experiments were conducted, each with different process variables. Rectangular and cylindrical specimens were fabricated and a corresponding jig was prepared for use in the experiment. Analyses conducted by using ANOVA enabled comparisons of the effects of each process variable on the experiment.

A Statistical Study on the Blasting Conditions when Micro Blasting for Rotating Aluminum Rod (회전하는 알루미늄 환봉의 미세입자 분사가공시 통계적 방법에 의한 분사조건에 대한 연구)

  • Kwon, Dae Kyu;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.135-141
    • /
    • 2017
  • An experimental study of micro blasting for a rotating aluminum rod was conducted through the statistical analysis of ANOVA to obtain the effect of blasting conditions. The rotating equipment was designed and constructed with forward and backward moving for helical blasting, but rotation was used in this study. The blasting condition factors were the type of abrasive particle, nozzle diameter, pressure, standoff distance, injection time, etc. The width of the surface, the maximum depth of the sprayed surface, and ANOVA were analyzed by statistical analysis. The results showed that the contributions of the main factors were pressure, nozzle diameter, and injection particle.

Performance Characteristics Analysis of a Three Dimensional Asymmetric Pintle Nozzle Induced by Connection-Tube Angle and Pintle Stroke Position (비대칭 3차원 핀틀 노즐의 연결관 각도와 핀틀 위치에 대한 성능 특성 해석)

  • Lee, KangMin;Hong, JiSeok;Sung, Hong-Gye;Heo, Junyoung;Jin, Jungkun;Ha, DongSung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.383-387
    • /
    • 2017
  • A three dimensional numerical analysis has been conducted to analyze the effects of a pipe angle, connecting a combustion chamber and a pintle nozzle, and pintle position on pintle nozzle performance. The compressibility correction of $k-{\omega}$ SST turbulent model was implemented to precisely predict the characteristics of complex flow structures inside a supersonic pintle nozzle. Due to an 3-D asymmetric pintle nozzle configuration, complex helical flow streamlines and large flow separations were observed, which resulting in significant nozzle performance losses. As the angle of connection-tube decreases, the coefficient of performance increases and Since the flow structures are evidently changed to the pintle stroke position, the performance characteristics was analyzed.

  • PDF

Instability of High-Speed Impinging Jets(II) (고속 충돌제트의 불안정 특성)

  • Gwon, Yeong-Pil;Im, Jeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.450-467
    • /
    • 1998
  • The characteristics of the unstable impinging circular jet is investigated based on the frequency characteristics and the sound field of the impinging-tones. Two symmetric modes S1 and S2, associated with low frequency and high frequency respectively, and one helical mode H have been observed. At low speed the S2 mode is dominant and switched by the S1 mode as the speed increases. When the jet speed is high the S1 mode is very active over the impinging distance from half the nozzle diameter to its ten times, while the S2 mode occurs at shorter distance corresponding to stage 2 and 3. The helical mode H seems unstable, likely to be influenced much by the experimental environment, and occurs at relatively high speed with almost the same frequency characteristics as the S2 mode. By estimating the convection speed of the unstable jet, it is found that the ratio of the convection speed to the jet speed decreases with both Strouhal number and Reynolds number and the speed of S2 mode is faster than the Si mode. When the present experimental results are compared with the previous investigations performed for the hole tone and the impinging tone with a small plate, the S1 mode is found to be associated with the ring vortex of large diameter with low speed, but the S2 mode with the vortex of small diameter with high speed. In addition, the frequency is found to be influenced by the nozzle configuration but the characteristics is almost the same. From the impinging distance and frequency range, it can be deduced that S1 mode is related with the jet column mode and S2 mode with the shear mode.

A Study on the Fine Particle Dispensing Conditions for a Spiral Surface of Round Aluminum Bars (알루미늄 환봉의 나선형 표면 미세입자 분사가공의 조건에 대한 연구)

  • Choi, Sung-Yun;Lee, Eun-Ju;Lee, Sea-Han;Kwon, Dae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.88-93
    • /
    • 2020
  • The goal of this study is to determine the influence of major factors on the spiral surface microparticle injection machining of cylindrical specimens by the statistical method ANOVA. Before the experiment, rod-shaped test specimens and jigs for helical surface spraying were prepared, and the surface roughness was measured with a surface roughness meter. The injection particle, nozzle diameter, and injection pressure were the primary parameters of the experiment. Other factors that were considered were injection height, injection time, revolutions, and feed distance. The surface roughness after machining was measured, and the effects of the surface roughness data on the primary factors were determined with ANOVA.