• Title/Summary/Keyword: Helenalin

Search Result 3, Processing Time 0.017 seconds

Inhibitory Effects of β-Cyclodextrin-Helenalin Complexes on H-TERT Gene Expression in the T47D Breast Cancer Cell Line - Results of Real Time Quantitative PCR

  • Ghasemali, Samaneh;Nejati-Koshki, Kazem;Akbarzadeh, Abolfazl;Tafsiri, Elham;Zarghami, Nosratollah;Rahmati-Yamchi, Mohamad;Alizadeh, Effat;Barkhordari, Amin;Tozihi, Majid;Kordi, Shirafkan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6949-6953
    • /
    • 2013
  • Background: Nowadays, the encapsulation of cytotoxic chemotherapeutic agents is attracting interest as a method for drug delivery. We hypothesized that the efficiency of helenalin might be maximized by encapsulation in ${\beta}$-cyclodextrin nanoparticles. Helenalin, with a hydrophobic structure obtained from flowers of Arnica chamissonis and Arnica Montana, has anti-cancer and anti-inflammatory activity but low water solubility and bioavailability. ${\beta}$-Cyclodextrin (${\beta}$-CD) is a cyclic oligosaccharide comprising seven D-glucopyranoside units, linked through 1,4-glycosidic bonds. Materials and Methods: To test our hypothesis, we prepared ${\beta}$-cyclodextrin-helenalin complexes to determine their inhibitory effects on telomerase gene expression by real-time polymerase chain reaction (q-PCR) and cytotoxic effects by colorimetric cell viability (MTT) assay. Results: MTT assay showed that not only ${\beta}$-cyclodextrin has no cytotoxic effect on its own but also it demonstrated that ${\beta}$-cyclodextrin-helenalin complexes inhibited the growth of the T47D breast cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of ${\beta}$-cyclodextrin-helenalin complexes increased. Conclusions: ${\beta}$-Cyclodextrin-helenalin complexes exerted cytotoxic effects on T47D cells through down-regulation of telomerase expression and by enhancing Helenalin uptake by cells. Therefore, ${\beta}$-cyclodextrin could be superior carrier for this kind of hydrophobic agent.

Inducing effect of helenalin on the differentiation of HL-60 leukemia cells

  • KIm, Seung-Hyun;Kim, Tae-Sung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.166.3-167
    • /
    • 2003
  • Helenalin, a cell-permeable pseudoguainolide sesquiterpene lactone, is a potent anti-inflammatory agent that inhibits $NF-{\kappa}B$ DNA binding activity by selectively alkylating the p65 subunit of $NF-{\kappa}B$. Transcription factors such as $NF-{\kappa}B$ provide powerful target of drugs to use in the treatment of cancer. Human promyelocytic leukemia HL-60 cells are differentiated into monocytic or granulocytic lineage when treated with 1,25-dihydroxyvitamin $D_3{\;}[1,25-(OH)_2D_3]$ or all-trans-retinoic acid (ATRA), respectively. (omitted)

  • PDF

Sesquiterpene Lactones: A Review of Biological Activities (세스퀴테르펜 락톤류: 생리활성 재검토)

  • Karadeniz, Fatih;Oh, Jung Hwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.430-441
    • /
    • 2021
  • Sesquiterpene lactones (STLs) are terpenoids found mostly in the Asteraceae family and are known for their strong cytotoxic properties, among other notable bioactivities. Some STLs, such as artemisinin and mipsagargin, are already commercially available and are used to fight malaria and tumor growth, respectively. Although the interest in STLs was low for a time after their discovery due to their toxic nature, past decades have witnessed a soar in STL-based studies focused on developing novel pharmaceuticals via chemical diversification. These studies have reported several promising physiological effects for STLs, including lower toxicity and diverse modes of action, and have demonstrated the antimicrobial, antioxidant, hepatoprotective, antiviral, antiprotozoal, phytotoxic, antitumor, and antiaging properties of STLs. STLs are mainly considered as valuable natural molecules for the fight against cancer since most STLs induce death of different types of cancer cells, as shown by in vitro and in vivo studies. Some STLs can also enhance the effects of drugs that are already in clinical use. Medicinal chemists use various STLs as starting molecules for the synthesis of new STLs or different bioactive compounds. All these developments warrant future research to provide more information on STLs, their bioactivities, and their mode of action. In this context, this review has summarized the bioactivities of some of the widely studied STLs, namely artemisinin, costunolide, thapsigargin, arglabin, parthenolide, alantolactone, cynaropicrin, helenalin, and santonin.