• Title/Summary/Keyword: Height sensor

Search Result 354, Processing Time 0.028 seconds

Detection of Excited Vibration frequency on the Latticed Fence Structure Using a Distributed Fiber Optic Sensor (격자형 구조물의 외부 진동 주파수 탐지를 위한 분포형 광섬유 센서 설계 및 실험)

  • Lee, Jong-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.234-237
    • /
    • 2002
  • To detect external vibration signals on the latticed fence structure, distributed fiber optic sensor using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 170cm in width and 180cm in height, the optical fiber, 50m in length, distributed and fixed on the latticed structure. It was verified the sensitivity of the Sagnac interferometer using the PZT phase modulator. Fiber optic external vibration signal spplied to the latticed fence structure from 100Hz to several kHz. The interferometeric fiber optic sensor detected the excited vibration signal very effectively without any signal processing. The detected optical signals were compared and analyzed to the detected acclerometer signals.

  • PDF

Investigation on PVDE & PZT Sensor Signals for the Low-Velocity Impact Damage of Gr/Ep Composite Laminates (복합적층판의 저속충격손상에 따른 PZT 센서와 PVDF 센서의 신호 분석)

  • 이홍영;김진원;최정민;김인걸
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.125-128
    • /
    • 2003
  • Low-velocity impact damage is a major concern in the design of structures made of composite materials, because impact damage is hidden inside and cannot be detected by visual inspection. The piezoelectric thin film sensor can be used to detect variations in structural and material properties for structural health monitoring. In this paper, the PVDF and PZT sensors were used for monitoring impact damage initiation in Gr/Ep composite panel to illustrate this potential benefit. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The wavelet transform(WT) is used to decompose the piezoelectric sensor signals in this study. Test results show that the particular waveform of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. And it is found that both PZT and PVDF sensors can be used to detect the impact damage.

  • PDF

The Analysis in Measurement Performance MEMS Sensor Through the Low-Noise Vibration Measurement APP (저노이즈형 진동계측 앱을 통한 MEMS 센서의 계측성능분석)

  • Jung, Young-Seok;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • With increasing number construction of high-rise building which has about 40 to 60 floors there have been many kinds of problem which related with usage from vibration. To predict response acceleration, it is important to assess correct natural frequency. However, due to the noise of MEMS sensor, it is difficult to measure dynamic characteristic such as natural frequency when measuring ambient vibration using MEMS sensor within cell phone. Therefore, a comparative analysis on vibration measuring applications was performed after measuring ambient vibration of 2 skyscrappers which have height between 133.5~244.3m that are located in Seoul and Observation tower using I-jishin APP with noise reduction function of MEMS sensor in order to verify the effectiveness of low noise type vibration measurement APP.

Development of 6-axis Ankle Force/Moment Sensor for an Intelligent Foot of a Humanoid Robot (인간형 로봇의 지능형 발을 위한 6축 발목 힘/모멘트센서)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.27-36
    • /
    • 2007
  • This paper describes the development of 6-axis ankle force/moment sensor for the intelligent feet of a humanoid robot. When the robot walks on uneven terrain, the feet should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz from the attached 6-axis force/moment sensor on their ankles. Papers have already been published have some disadvantages in the size of the sensor, the rated output and so on. The rated output of each component sensor (6-axis ankle force/moment sensor) is very important to design the 6-axis force/moment sensor for precision measurement. Therefore, each sensor should be designed to get the similar rated output under each rated load. Also, the size of the sensor is very important for mounting to robot's feet. Therefore, the diameter should be below 100 mm and the height should be below 40mm. In this paper, first, the structure of a 6-axis ankle force/moment sensor was modeled for a humanoid robot's feet newly, Second, the equations to predict the strains on the sensing elements was derived, third, the size of the sensing elements was designed by using the equations, then, the sensor was fabricated by attaching straingages on the sensing elements, finally, the characteristic test of the developed sensor was carried out. The rated outputs from the derived equations agree well with the results from the experiments. The interference error of the sensor is less than 2.94%.

Characteristic of the pulse wave in hypertension using pulse analyzer with array piezoresistive sensor (어레이 압저항 센서 장착 맥진기의 고혈압 맥파 특성)

  • Choi, Yong-Seok;Kim, Kyung-Yo;Hwang, Seung-Yeon;Kim, Jong-Yeol;Lee, Si-Woo;Kim, Hyun-Hee;Joo, Jong-Cheon
    • Korean Journal of Acupuncture
    • /
    • v.24 no.3
    • /
    • pp.105-116
    • /
    • 2007
  • Objectives : This study was performed to determine whether a pulse analyzer using array piezoresistive sensor was useful to characterize the variables of pulse wave of hypertentive patients (HT) , compared with those of healthy subjects. Methods : One hundred twenty two subjects participated in this study. Sixty nine subjects had hypertension and fifty three subjects had no specific history or disease associated with hypertension. We used automatic pulse analyzer with array piezoreslstive sensor. Results : Calibrated in Chon, no specific differences was between HT group and the healthy group. Calibrated in Gwan. sum of pulse pressure (SPP) of HT group was higher than that of the healthy group. Calibrated in Cheek, mean of height of main peak (Mm) and height of main peak (h1) of HT group were higher than those of the healthy group. Conclusions : Pulse analyzer was useful to determine the risk degree or development possibility of hypertension.

  • PDF

Approximate 3D Localization Mechanism in Wireless Sensor Network (무선 센서 네트워크 환경에서 3차원 근사 위치추적 기법)

  • Shim, Jaeseok;Lim, Yujin;Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.614-619
    • /
    • 2014
  • In WSN (Wireless Sensor Networks) based surveillance system, it needs to know the occurrence of events or objects and their locations, because the data have no meaning without location information. Using traditional 2D localization mechanisms provide good accuracy where altitude is fixed. But the mapping the position estimated by 2D localization to the real world can cause an error. Even though 3D localization mechanisms provide better accuracy than 2D localization, they need four reference nodes at least and high processing overhead. In our surveillance system, it is needed to estimate the height of the detected object in order to determine if the object is human. In this paper, we propose a height estimation mechanism which does not require many reference nodes and high complexity. Finally, we verify the performance of our proposed mechanism through various experiments.

Quantitative Monitoring of Body Pressure Distribution Using Built-in Optical Sensors

  • Lee, Kang-Ho;Kwon, Yeong-Eun;Seo, Jihyeon;Lee, Byunghun;Lee, Dongkyu;Kwon, Ohwon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.279-282
    • /
    • 2020
  • In this study, body pressure was quantitatively detected using built-in optical sensors, inside an air cushion seat. The proposed system visualizes the effect of the body pressure distribution on the air cushion seat. The built-in sensor is based on the time-of-flight (ToF) optical method, instead of the conventional electrical sensor. A ToF optical sensors is attached to the bottom surface of the air-filled cells in the air cushion. Therefore, ToF sensors are durable, as they do not come in physical contact with the body even after repeated use. A ToF sensor indirectly expresses the body pressure by measuring the change in the height of the air-filled cell, after being subjected to the weight of the body. An array of such sensors can measure the body pressure distribution when the user sits on the air cushion seat. We implemented a prototype of the air cushion seat equipped with 7 ToF optical sensors and investigated its characteristics. In this experiment, the ToF optical pressure sensor successfully identified the pressure distribution corresponding to a sitting position. The data were accessed through a mobile device.

Application Possibility of Control Points Extracted from Ortho Images and DTED Level 2 for High Resolution Satellite Sensor Modeling (정사영상과 DTED Level 2 자료에서 자동 추출한 지상기준점의 IKONOS 위성영상 모델링 적용 가능성 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung;Park, Wan-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2007
  • Ortho images and Digital Elevation Model (DEM) have been applied in various fields. It is necessary to acquire Ground Control Points (GCPs) for processing high resolution satellite images. However surveying GCPs require many time and expense. This study was performed to investigate whether GCPs automatically extracted from ortho images and DTED Level 2 can be applied to sensor modeling for high resolution satellite images. We analyzed the performance of the sensor model established by GCPs extracted automatically. We acquired GCPs by matching satellite image against ortho images. We included the height acquired from DTED Level 2 data in these GCPs. The spatial resolution of the DTED Level 2 data is about 30m. Absolution accuracy of this data is below 18m above MSL. The spatial resolution of ortho image is 1m. We established sensor model from IKONOS images using GCPs extracted automatically and generated DEMs from the images. The accuracy of sensor modeling is about $4{\sim}5$ pixel. We also established sensor models using GCPs acquired based on GPS surveying and generated DEMs. Two DEMs were similar. The RMSE of height from the DEM by automatic GCPs and DTED Level 2 is about 9 m. So we think that GCPs by DTED Level 2 and ortho image can use for IKONOS sensor modeling.

  • PDF

BLDC Motors for Robot Vacuum Cleaners (로봇청소기용 BLDC 모터)

  • Kim, Hyun-Jung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.172-174
    • /
    • 2011
  • This paper is presented for robot vacuum cleaners using BLDC motors. Recently, BLDC motors which require smaller size, lower sound noise and higher efficiency have been placed in high value-added products including robot vacuum cleaners, vehicle cars and other industry applications. The DC motors have higher sound noise, higher height of the size and lower efficiency due to electro-magnetic structure using the brushes and the commutators. The proposed BLDC motors are appropriate for the motors adequate in regards to higher efficiency, longer life cycle time, and smaller height of the size when robot vacuum cleaners go to some lower height of the space like under sleeping beds and because it's power source is batteries. The paper shows the performance of the BLDC motors designed by the Finite Element Analysis(FEA) of the electro-magnetic field. This paper shows the mechanical structure and the prototype of the motor with the impeller. The performance characteristics of the BLDC motors with the hall sensor controller are verified by the experimental results.

A Study about weight grant of Authentication level in USN environment

  • Choi, Bae-Young;Ahn, Byung-Ryul;Chung, Tai-Myoung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.165-168
    • /
    • 2005
  • The objects, which can be personal digital assistants, electronic rings, doors or even clothes, offer embedded chips with computation facilities and are generally called artifacts. I later realized that this was not so the real problem is actually authentication. Recent results indicate scalability problems for flat ad hoc networks. Sensor network achieves function that handle surrounding information perception through sensor and sensed information to network that is consisted of sensor nodes of large number. Research about new access control techniques and height administration techniques need authentication information persons' certification assurance level classification in sensor network environment which become necessary different view base with authentication information at node for application of AAA technology in USN environment that must do authentication process using information that is collected from various sensor mountings. So, get base authentication information in sensor type and present weight grant model by security strength about authentication information through information who draw. In this paper collected information of sensor nodes model who give weight drawing security reinforcement as authentication information by purpose present be going to. and Must be able to can grasp special quality of each sensor appliances in various side and use this and decide authentication assurance level for value estimation as authentication information elements. Therefore, do to define item that can evaluate Authentication information elements thus and give simple authentication assurance level value accordingly because applying weight. Present model who give authentication assurance level value and weight for quotation according to security strength.

  • PDF