• Title/Summary/Keyword: Height Motor

Search Result 153, Processing Time 0.028 seconds

Design and Performance Evaluation of Attitude Control System for Unfixed Levitation Sculptures (무 고정 공중부양 조형물의 자세 제어장치 설계 및 성능평가)

  • Kang, Jingu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.11-17
    • /
    • 2017
  • The aerial support air sculptures currently exhibited in indoor spaces are similar to simple ad balloons, using multiple rope strands. Users now want more advanced unfixed sculptures, and hope these will develop into buoyant sculptures that can maintain the attitudes that users want on their own. This study investigated an attitude control system for unfixed levitation sculptures that can levitate with no rope and continuously maintain a certain attitude at a height specified by the user. To facilitate levitation, the exterior part of the sculpture was made of lightweight fibers, and the interior part was filled with helium gas. The controller was composed of a microprocessor of the dsPIC30F line from microchip, gyro, acceleration, and earth magnetic field sensors, and a highly efficient brushless DC (BLDC) electric motor. The attitude and position control system requires scheduling considering the trajectories of the sculpture and the control system, because the roles of the overall components are more important than those of a single controller. Furthermore, the system was designed like a fusion system that is expanded and controlled as a total controller, because it is interconnected with various sensors. The attitude control system of buoyant sculptures was implemented in this study, such that it can actively cope with the position, direction, stopping, and time aspects. The system performance was then evaluated.

A Study on the Rehabilitation Equipment for Knee Joint (무릎관절 재활기구에 관한 연구)

  • Lee, Gui-Hyung;Kim, Yong-Jin;Park, Seok-Hyun;Lee, Hyo-Sung;Cho, Hyun-A
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.509-517
    • /
    • 2013
  • This paper presents upgraded equipment to assist a patient in rehabilitating of their knee-joint by themselves. A new automatic mechanism is suggested and developed in order to add functions for enforcing the leg muscles, which were absent in previous rehabilitation machines. Using the Pro-engineer software, we analyze the displacements and speeds of several moving points of the equipment during various planned exercises. In addition, an appropriate control panel for operation is developed. Three motors andthree motor drivers are used in a tilting part for the ankle joint, sliding guide part for the knee joint, and up-down moving part for the whole leg. Finally, various newly upgraded motions can be generated by controlling the three motors simultaneously. we show that by using this equipment, we can adjust the proper length of the equipment according to the user's height and the intensity of the rehabilitation exercise.

Ramp Load/Unload Velocity Control of VCM Using BEMF in HDD (램프 로드/언로드 하드디스크 드라이브의 역기전력을 이용한 VCM 속도제어)

  • Jeong, Jun;Kim, Tae-Soo;Kang, Tae-Sik;Jung, Kwang-Jo;Lee, Chul-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.50-56
    • /
    • 2006
  • Since most of small form-factor drives have a load/unload mechanism and the flying height of the head is getting lower as the capacity of disk drives increases, the load/unload velocity becomes one of the important factors to ensure the reliability of the load/unload mechanism. To control the load/unload velocity accurately, velocity sensing is essential. In this paper, we introduce a very practical method that acquires the load/unload velocity from the back electromotive force (BEMF) of a voice coil motor (VCM) and propose a calibration method for measuring the BEMF from a given circuit. Moreover, the effect of calibration error and temperature variation on the measurement of BEMF is shown by simulation. Then, this present method is applied to the load/unload velocity controller and is verified from the experimental result.

Analysis of Obesity and Sarcopenia among COPD Patients in Korea (한국 COPD 환자의 비만도와 근감소증 분석)

  • Jekal, Yoonsuk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.604-612
    • /
    • 2020
  • The purpose of this study is to analyze the level of obesity and sarcopenia among chronic obstructive pulmonary disease(COPD) patients in Korea. The current study recruited 75 patients with COPD who visited the department of respiratory medicine at J University Hospital in J-do. Height, body weight, waist circumference, and hip circumference were measured, and body composition, muscle strength, and flexibility were assessed. The levels of obesity were classified with body mass index(BMI), waist-hip circumference ratio(WHR) and percent body fat, and sarcopenia was classified with the value of skeletal muscle mass and muscle strength by Asian Working Group for Sarcopenia. In results, it was found that the level of obesity was very high as 43% by BMI, 88% by WHR, and 64% by percent body fat. The lower level of muscle strength was 15.50% in males and 23.50% in females. The lower level of muscle mass was 24.10% in males and .00% in females. Males who had one sarcopenia factors were 22.40%, and females were 23.50%, respectively. Males with sarcopenia were 6.90%, and females were .00%. In conclusion, regular resistance exercise is essential not only for the development of motor skills, but also for the normalization of skeletal muscle function and prevention of muscle dystrophy among COPD patients.

Parallel Finite Element Simulation of the Incompressible Navier-stokes Equations (병렬 유한요소 해석기법을 이용한 유동장 해석)

  • Choi H. G.;Kim B. J.;Kang S. W.;Yoo J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.8-15
    • /
    • 2002
  • For the large scale computation of turbulent flows around an arbitrarily shaped body, a parallel LES (large eddy simulation) code has been recently developed in which domain decomposition method is adopted. METIS and MPI (message Passing interface) libraries are used for domain partitioning and data communication between processors, respectively. For unsteady computation of the incompressible Wavier-Stokes equation, 4-step splitting finite element algorithm [1] is adopted and Smagorinsky or dynamic LES model can be chosen fur the modeling of small eddies in turbulent flows. For the validation and performance-estimation of the parallel code, a three-dimensional laminar flow generated by natural convection inside a cube has been solved. Then, we have solved the turbulent flow around MIRA (Motor Industry Research Association) model at $Re = 2.6\times10^6$, which is based on the model height and inlet free stream velocity, using 32 processors on IBM SMP cluster and compared with the existing experiment.

  • PDF

FINITE ELEMENT MODELING AND PARAMETER STUDY OF HALF-BEAD OF MLS CYLINDER HEAD GASKET

  • CHO S. S.;HAN B. K.;LEE J. H.;CHANG H.;KIM B. K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.109-114
    • /
    • 2006
  • Half-beads of multi-layer-steel cylinder head gaskets take charge of sealing of lubrication oil and coolant between the cylinder head and the block. Since the head lifts off periodically due to the combustion gas pressure, both the dynamic sealing performance and the fatigue durability are essential for the gasket. A finite element model of the halfbead has been developed and verified with experimental data. The half-bead forming process was included in the model to consider the residual stress effects. The model is employed to assess the dependence of the sealing performance and the fatigue durability on the design parameters of half-bead such as the width and height of bead and the flat region length. The assessment results show that the sealing performance can be enhanced without significant deterioration of the fatigue durability in a certain range of the half-bead width. In the other cases the improvement of sealing performance is accompanied by the loss of the fatigue durability. Among three parameters, the bead width has the strongest influence.

Anti-Sway Control of a Jib Crane Using Time Optimal Control (시간최적제어를 이용한 지비크레인의 흔들림제어)

  • KANG MIN-WOO;HONG KEUM-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.87-94
    • /
    • 2005
  • This paper investigates the constant-level luffing and time optimal control of jib cranes. The constant-level luffing, which is the sustainment of the load at a constant height during luffing, is achieved by analyzing the kinematic relationship between the angular displacement of a boom and that of the main hoist motor of a jib crane. Under the assumption that the main body of the crane does not rotate, the equations of motion of the boom are derived using Newton's Second Law. The dynamic equations for the crane system are highly nonlinear; therefore, they are linearized under the small angular motion of the load to apply linear control theory. This paper investigates the time optimal control from the perspective of no-sway at a target point. A stepped velocity pattern is used to design the moving path of the jib crane. Simulation results demonstrate the effectiveness of the time optimal control, in terms of anti-sway motion of the load, while luffing the crane.

Analytical Approach on Intake fort Development of SI Engines Based on Correlations of Design Parameters and Flow Coefficients (가솔린엔진의 흡기유량계수와 포트설계인자의 상관성에 관한 연구)

  • Lee, Si-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.121-129
    • /
    • 2006
  • An Intake Port of SI engines plays a key role on improving engine performance by maximizing full load volumetric efficiency or by optimizing in-cylinder air motion. However, designing an intake port has been usually performed based on port experts' experience and know-how, which means that analytical analyses are relatively insufficient. In this paper, port design parameters which decide an overall port shape were defined in order to correlate them relevantly with flow test results accumulated so far. Test species were composed of all twenty eight SI engines which cover major engine displacements from 1,000cc to 4,000cc. First, they were tested on a steady state flow test rig to find out their flow coefficients. Secondly, those flow coefficients were analyzed based on the port design parameters measured from the engines. The most effective parameters were port height, valve head diameter, and the ratio of port size and cylinder bore diameter. The final correlation equation could predict flow coefficients within 2% deviation.

Case Report of Physical Therapy Using the PNF Concept in a Patient with Shoulder Impingement Syndrome (어깨 부딪힘 증후군 환자에 대한 PNF 개념을 이용한 물리치료 사례보고)

  • Kim, Jwa-Jun;Shin, Jae-Wook
    • PNF and Movement
    • /
    • v.12 no.3
    • /
    • pp.189-199
    • /
    • 2014
  • Purpose: The objective of this case report is to examine the impact of physical therapy using the proprioceptive neuromuscular facilitation (PNF) concept for a patient with shoulder impingement syndrome. Methods: The patient is a 35-year-old female who has felt pain in the right shoulder for one month. The physical examination evaluated sensory integration, pain, joint integration and mobility, posture, reflex integration, range of motion, muscular strength, analysis of movement, and shoulder function. Comprehensive physical therapy was given to the patient, including stretching, mobilization, strengthening, posture correction, coordination improvement, daily activities, and sports exercises. The therapy was given 5 times a week for the first 5 weeks, then 3 times a week for the next 5 weeks. In all, the intervention lasted for 10 weeks. Results: The patient's senses, posture, and muscular strength all improved to a normal level. The degree of pain fell from 3/10 to 0/10 for activities taking place below shoulder height, and from 8/10 to 1/10 for activities above the head. Additionally, joint integration, motility, range of motion, and movements also improved. The disabilities of the arm, shoulder and hand (DASH) for functional evaluation improved from 27.5 to 10.3. Conclusion: Physical therapy using the PNF concept is effective in improving the body structure, function, activity, and participation of patients with motor disorders of the shoulder impingement syndrome.

A Development of the Safety Accident Prevention Fence System Based on Internet of Things

  • PARK, Mi-Seon;KIM, Ji-Yeong;KANG, Min-Soo
    • Korean Journal of Artificial Intelligence
    • /
    • v.8 no.2
    • /
    • pp.1-5
    • /
    • 2020
  • Children's home accidents are less common than in the past. However, safety accidents continue to occur due to carelessness of the parents. To solve the problem, there are fall prevention screens that can withstand the weight of children, and safety railings that can be adjusted directly to solve the problem. However, these have disadvantages such as stability, convenience, and damage to the landscape. In this paper, we developed an automatic safety accident prevention fence system that can be installed on a window using Arduino, eliminating the disadvantages of previous safety accident prevention products. This system measures the height of a person standing in front of the fence and the distance between the person and the fence with two infrared sensors and moves automatically using a motor. In addition, in accordance with the U-Healthcare society, users can check the temperature, humidity, and fine dust concentration of the external environment through mobile. Each information can be obtained through DHT 11 sensor, fine dust concentration sensor, and Bluetooth connected toArduino. These can help the user's health care.