• 제목/요약/키워드: Heidke's skill score

검색결과 6건 처리시간 0.02초

이진자료 분류모형에 대한 평가측도의 특성 비교 (Comparison of evaluation measures for classification models on binary data)

  • 김병수;권소영
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.291-300
    • /
    • 2019
  • 본 논문에서는 반응변수가 이진형인 분류모형에 대한 평가측도들의 특성을 파악하고 사용하기 적합한 평가측도인가를 살펴보았다. 고려한 측도는 정분류율, 민감도, 특이도, 정밀도, F-measure, HSS (Heidke's skill score)의 6개이다. 각 측도들은 이원분할표에서 x(실제로 1인 비율), y(1로 예측되는 비율), z(실제와 예측이 모두 1인 비율)을 사용하여 표현하였다. 본 연구는 평가측도가 사용하기 적합한 측도가 되기 위한 조건으로 두 가지를 제안하였다. 제1조건은 랜덤모형인 경우에 평가측도는 x와 y에 대해 상수이고, 제2조건은 평가측도의 식이 세 변수들(x, y, z) 모두로 이루어지고 z에 대해서 증가함수이고 x와 y에 대해서 감소함수이어야 한다는 것이다. HSS는 두 조건을 모두 만족하므로 이진형 반응변수의 분류모형에 대한 평가측도로 항상 사용이 적합하고, 다른 측도들은 제한된 범위 내에서만 사용하는 것이 좋다.

PNU CGCM과 WRF를 이용한 남한 지역 기온 예측성 검증 (Predictability of Temperature over South Korea in PNU CGCM and WRF Hindcast)

  • 안중배;심교문;정명표;정하규;김영현;김응섭
    • 대기
    • /
    • 제28권4호
    • /
    • pp.479-490
    • /
    • 2018
  • This study assesses the prediction skill of regional scale model for the mean temperature anomaly over South Korea produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. The initial and boundary conditions of WRF are derived from PNU CGCM. The hindcast period is 11 years from 2007 to 2017. The model's prediction skill of mean temperature anomaly is evaluated in terms of the temporal correlation coefficient (TCC), root mean square error (RMSE) and skill scores which are Heidke skill score (HSS), hit rate (HR), false alarm rate (FAR). The predictions of WRF and PNU CGCM are overall similar to observation (OBS). However, TCC of WRF with OBS is higher than that of PNU CGCM and the variation of mean temperature is more comparable to OBS than that of PNU CGCM. The prediction skill of WRF is higher in March and April but lower in October to December. HSS is as high as above 0.25 and HR (FAR) is as high (low) as above (below) 0.35 in 2-month lead time. According to the spatial distribution of HSS, predictability is not concentrated in a specific region but homogeneously spread throughout the whole region of South Korea.

다중 선형 회귀를 이용한 PNU/CME CGCM의 동아시아 여름철 강수예측 보정 연구 (A Correction of East Asian Summer Precipitation Simulated by PNU/CME CGCM Using Multiple Linear Regression)

  • 황윤정;안중배
    • 한국지구과학회지
    • /
    • 제28권2호
    • /
    • pp.214-226
    • /
    • 2007
  • 강수는 다양한 대기 변수들의 영향으로 나타나기 때문에 비선형성이 매우 강하다. 따라서 역학 모형을 통해 예측된 강수의 보정은 비선형 모형인 인공 신경망 등을 통해 가능할 것이지만, 인공 신경망의 경우 초기 가중치 선택, 지역 최소화 문제, 뉴런의 수 결정 등의 문제로 인한 한계가 있다. 그러므로 본 연구에서는 가장 보편적으로 사용되는 다중 선형 회귀 모형을 이용하여 CGCM에 의해 모사된 강수를 보정하였으며, 예측성을 살펴보았다. 이를 위하여 우선 PNU/CME 접합 대순환 모형(Coupled General Circulation model, CGCM)(박혜선과 안중배, 2004)을 이용하여 1979년부터 2005년까지 매해 4월부터 8월까지 5개월간 앙상블 적분을 하였다. 적분 결과 중 한반도를 포함한 동북아시아 지역$(110^{\circ}E-145^{\circ}E,\;25^{\circ}N-55^{\circ}N)$의 여름철인 6월(리드 2), 7월(리드 3), 8월(리드 4) 및 여름철 평균인 JJA(from June to August) 기간의 PNU/CME CGCM에 의해 모사된 강수를 보정하기 위해 다중 선형 회귀(Multiple Linear Regression, MLR)를 이용하였다. PNU/CME 접합 대순환 모형의 결과 중 강수, 500 hPa 연직 속도, 200 hPa 발산장, 지상 기온 등의 예측 인자와 관측 강수와의 선형적인 관계를 이용하여 MLR 모형을 구축하였다. 그리고 교차 검증(cross- validation)을 수행하여 PNU/CME 접합 대순환 모형의 결과와 교차 검증 결과를 비교하였다. 상관계수, 적중률 (hit rate), 오보율(false alarm rate) 그리고 Heidke 기술 점수(Heidke skill score) 등을 살펴본 바, 보정하지 않은 모형의 결과에 비해 MLR 모형을 이용하여 보정한 결과의 강수에 대한 예측성이 뛰어난 것을 알 수 있었다.

EVALUATION OF SEA FOG DETECTION USING A REMOTE SENSED DATA COMBINED METHOD

  • Heo, Ki-Young;Ha, Kyung-Ja;Kim, Jae-Hwan;Shim, Jae-Seol;Suh, Ae-Sook
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.294-297
    • /
    • 2007
  • Steam and advection fogs are frequently observed in the Yellow Sea located between Korea and China during the periods of March-April and June-July respectively. This study uses the remote sensing (RS) data for monitoring sea fog. Meteorological data obtained from the Ieodo Ocean Research Station provided an informative synopsis for the occurrence of steam and advection fogs through a ground truth. The RS data used in this study was GOES-9, MTSAT-1R images and QuikSCAT wind data. A dual channel difference (DCD) approach using IR and near-IR channel of GOES-9 and MTSAT-1R satellites was applied to estimate the extension of the sea fog. For the days examined, it was found that not only the DCD but also the texture-related measurement and the weak wind condition are required to separate the sea fog from the low cloud. The QuikSCAT wind is used to provide a weak wind area less than threshold under stable condition of the surface wind around a fog event. The Laplacian computation for a measurement of the homogeneity was designed. A new combined method of DCD, QuikSCAT wind speed and Laplacian was applied in the twelve cases with GOES-9 and MTSAT-1R. The threshold values for DCD, QuikSCAT wind speed and Laplacian are -2.0 K, 8 m $s^{-1}$ and 0.1, respectively. The validation methods such as Heidke skill score, probability of detection, probability of false detection, true skill score and odds ratio show that the new combined method improves the detection of sea fog rather than DCD method.

  • PDF

PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증 (Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain)

  • 최명주;안중배;김영현;정민경;심교문;허지나;조세라
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.218-233
    • /
    • 2022
  • 본 연구에서는 Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF)에서 생산된 hindcast 자료(1986~2020)를 이용하여 우리나라의 주요 곡물 중 하나인 콩의 생육단계별 고온해 및 저온해 발생일수의 예측성을 평가하였다. 예측성을 평가하는 방법으로는 Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), Heidke Skill Score (HSS)이다. 이를 위해 먼저 콩의 고온해 및 저온해를 정의하는 변수인 일 최고기온(Tmax) 및 일 최저기온(Tmin)의 모의성능을 검증하였다. 그 결과 1~5월(01RUN~05RUN)의 초기조건을 가지고 시작하는 월에 따라 다소 차이가 있지만, Variance Scaling 방법을 적용하여 보정한 결과가 보정전보다 관측과 유사하게 나타났으며, 보정한 3~10월의 Tmax 및 Tmin에 대한 모의성능은 전반적으로 01RUN~05RUN에 Simple Composite Method (SCM)을 적용하여 평균한 결과(ENS)에서 높게 나타났다. 또한, 콩의 생육시기별 고온해 및 저온해 발생일수의 지역적 패턴과 특성을 관측과 비교하였을 때 모형이 잘 모의하고 있다. ENS에서 콩의 고온해(저온해)에 대한 HR과 HSS는 생육시기 별로 0.45~0.75, 0.02~0.10(0.49~0.76, -0.04~0.11)의 범위를 가진다. 결론적으로, PNU CGCM-WRF chain의 01RUN~05RUN 및 ENS는 우리나라 콩의 생육시기별 고온해 및 저온해를 예측할 수 있는 성능을 가지고 있다.

A Remote Sensed Data Combined Method for Sea Fog Detection

  • Heo, Ki-Young;Kim, Jae-Hwan;Shim, Jae-Seol;Ha, Kyung-Ja;Suh, Ae-Sook;Oh, Hyun-Mi;Min, Se-Yun
    • 대한원격탐사학회지
    • /
    • 제24권1호
    • /
    • pp.1-16
    • /
    • 2008
  • Steam and advection fogs are frequently observed in the Yellow Sea from March to July except for May. This study uses remote sensing (RS) data for the monitoring of sea fog. Meteorological data obtained from the Ieodo Ocean Research Station provided a valuable information for the occurrence of steam and advection fogs as a ground truth. The RS data used in this study were GOES-9, MTSAT-1R images and QuikSCAT wind data. A dual channel difference (DCD) approach using IR and shortwave IR channel of GOES-9 and MTSAT-1R satellites was applied to detect sea fog. The results showed that DCD, texture-related measurement and the weak wind condition are required to separate the sea fog from the low cloud. The QuikSCAT wind data was used to provide the wind speed criteria for a fog event. The laplacian computation was designed for a measurement of the homogeneity. A new combined method, which includes DCD, QuikSCAT wind speed and laplacian computation, was applied to the twelve cases with GOES-9 and MTSAT-1R. The threshold values for DCD, QuikSCAT wind speed and laplacian are -2.0 K, $8m\;s^{-1}$ and 0.1, respectively. The validation results showed that the new combined method slightly improves the detection of sea fog compared to DCD method: improvements of the new combined method are $5{\sim}6%$ increases in the Heidke skill score, 10% decreases in the probability of false detection, and $30{\sim}40%$ increases in the odd ratio.