• Title/Summary/Keyword: Heavy-metals

Search Result 3,375, Processing Time 0.026 seconds

Efficiency of Chemical Amendments for Reducing Ecotoxicity in Heavy Metal Polluted Agricultural Fields

  • Choi, Won-Suk;Kim, Dae-Bok;Hong, Young-Kyu;Kim, Soon-Oh;Lee, Sang-Woo;Lee, Byung-Tae;Lee, Sang-Hwan;Park, Mi-Jung;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • This study was conducted to evaluate effect of chemical amendments on reducing bioavailable fraction of heavy metals in soil along with ecotoxicological effect on earthworms, Eisenia fetida. Three different chemical amendments, lime (L), steel slag (SS), and acid mine drainage sludge (AMDS), were applied with varied application ratio (1, 3, 5%). Heavy metal contaminated soil was mixed with chemical amedments and earthworms, Eisenia fetida, were cultivated for 28 days. Bioavailable fraction of heavy metals (Cd, Cu, Pb, and Zn) extracted with 0.1N HCl was monitored and also, mortality, growth, and metal concentration in earthworm were assessed. Result showed that all three amendments had high efficiency to reduce bioavailable fraction of heavy metals in soil. In particular, lime showed the highest reduction rate of Cu (63.9-87.7%), Pb (7.90-24.65%), and Zn (40.83-77.60%) among three amendments. No mortality of earthworm was observed during experimental period except 3% and 5% AMDS treatment indicating that application of chemical amendments is safe in terms of ecotoxicological aspect. However, no positive correlation was observed between reduction of bioavaialble fraction of heavy metals in soil and earthworms. Overall, application of chemical amendments in agricultural field can be adapted for reducing bioavailable fraction of heavy metals and detoxification in soil.

Heavy Metal Accumulation of Small Mammals in Gumbo River Basin (금호강에 서식하는 소형포유류의 중금속축적에 관한 연구)

  • 이상돈
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.257-261
    • /
    • 2003
  • Population of small mammals (Apodemus agrarius and Crocidura lasiura) was monitored to identify the bioaccumulation of heavy metals in Gumho river basin around Daegu city. The small mammals were captured during 28 of May~12 of June, 2002. The techniques of live-trapping and snap-trapping were applied to capture the animals. A total of 39 animals were captured among which 53.3% (16130) of population were reached to breeding. Heavy metals (Cu, Pb, Zn, Cd) were analyzed. According to the analysis of heavy metal elements, Zn was more accumulated in kidney (6.83 mg $kg^{-1}$) than in liver (3.66). However, the accumulation of Cu was higher in liver than in kidney. Even though this site was relatively away from major industrial zones, heavy metals were wide spread along the stream of Gumbo River. This is the first quantitative study of small mammal bioaccumulation of heavy metals in Korea so that further research should be followed in other industrial areas that heavy metals were widely dispersed.

THE REMOVAL OF HEAVY METALS USING HYDROXYAPATITE

  • Lee, Chan-Ki;Kim, Hae-Suk;Kwon, Jae-Hyuk
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.205-212
    • /
    • 2005
  • The study was conducted to investigate the removal of heavy metals by using Hydroxyapatite(HAp) made from waste oyster shells and wastewater with high concentration of phosphorus. The maximum calcium concentration for the production of HAp in this study was released up to 361 mg/L at pH of 3 by elution experiments. When the pH was at adjusted 6, the maximum calcium released concentration was 41 mg/L. During the elution experiment, most of the calcium was released within 60 minutes. This reaction occurred at both pH levels of 3 and 6. The result of the XRD analysis for the HAp product used in this study shows the main constituent was HAp, as well as OCP. The pH was 8.6. As the temperature increased, the main constituent did not vary, however its structure was crystallized. When the pH was maintained at 3, the removal efficiency decreased as the heavy metal concentration increased. The order of removal efficiency was as follows: $Fe^{2+}$(92%), $Pb^{2+}$(92%) > $Cu^{2+}$(20%) > $Cd^{2+}$(0%). Most of these products were dissolved and did not produce sludge in the course of heavy metals removal. As the heavy metal concentration increased at pH of 6, the removal efficiency increased. The removal efficiencies in all heavy metals were over 80%. From the analysis of the sludge after reaction with heavy metals, the HAp was detected and the OCP peak was not observed. Moreover, lead ion was observed at the peaks of lead-Apatite and lead oxidant. In the case of cadmium, copper and iron ions, hydroxide forms of each ion were also detected.

Concentration of Heavy Metals in Seawater, Fish, and Shellfish at Lake Shihwa (시화호 내 수질 및 어패류의 중금속 분포 연구)

  • Lee, Gyuyoung;Lee, Seunghun;Oh, Sehun;Choi, Minji;Lee, Yong-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.157-163
    • /
    • 2018
  • This study aims to determine the pollution levels of nine kinds of heavy metals (As, Cd, Cu, Cr, Hg, Mn, Ni, Pb, and Zn) in Lake Shihwa, which is susceptible to the inflow of pollutants, and the levels of heavy metal exposure in its fish and shellfish. Shihwa Lake's water quality did not exceed the short-term standard for protection of marine ecosystems, but concentrations of As, Cu, Cr, Hg, Ni, and Zn exceeded the long-term standard for protection of a marine ecosystem. In comparison to findings in prior research, performed in 2010, levels of Cr, Ni, As, and Zn are now 4.1 times lower. However, when compared to Saemangeum Lake, the environment is similar to that of Lake Shihwa, Cu, Ni, Hg, Mn, and Zn were 244.4 times higher. The levels of Pb, Cd, and Hg in fish's muscles did not exceed the average values set by the marine safety standard. However, when compared to the fish from the Korean coast, the levels of heavy metals were 9.7 times higher, on average. The levels of heavy metals in fish's livers were on average 26.8 times higher than in the muscles. In the case of shellfish, the levels of Pb, Cd, and Hg did not exceed the standard values, but in comparison to the shellfish from the south coast, the levels of heavy metals were 6.2 times higher on average. In particular, Mn (153.5 times higher) from fish and Cd (14.7 times higher) from shellfish were found in high amounts, indicating a concerning level of these specific heavy metals.

Heavy Metal Accumulation in Oxyloma hirasei from the Upo Wetland

  • Kim, Heung-Tae;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.30 no.1
    • /
    • pp.81-86
    • /
    • 2007
  • Human activities have enhanced the influx of heavy metals to aquatic ecosystem and hanged the abiotic environment such as the sediments supporting benthic organisms. The levels of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in the benthic gastropod Oxyloma hirasei and the sediments around their habitat were investigated to examine heavy metal levels and the potential of the gastropod as a bioindicator. We detected different levels of heavy metals in the sediments of two wetland areas, Upo and Mokpo, in the relatively well-conserved Upo wetland, Ramsar Convention Area. Oxyloma hirasei had higher concentrations of heavy metals except Cr and Ni in their soft tissues than in their shells (Cd: $2.10{\sim}3.16$, Cu: $19.73{\sim}28.66$, Pb: $0.67{\sim}1.17$, Zn: $216.1{\sim}285.7\;{\mu}g/g$ dry weight in the soft tissues; Cr: $1.19{\sim}2.58$, Ni: $0.47{\sim}1.16\;{\mu}g/g$ dry weight in the shells). Differences in the Cd, Cu, Ni and Pb concentrations in O. hirasei soft tissues reflected differences in heavy metal concentrations in the sediments at the sampling sites. The coefficients of variation for Cd, Cu and Pb were lower than those for other metals in the soft tissues. Levels of Cd in the tissues of O. hirasei were the highest among the metals examined in this study. Therefore, the soft tissue of O. hirasei appears to be a promising bioindicator particularly for Cd.

Removal Efficiency of Heavy Metals in Acidic Mine Drainage from Microbial Mats (바이오매트 형성에 의한 산성광산배수 내 중금속 유출질량 제거효율)

  • Yu, Hun-Sun;Kwon, Byung-Hyuk;Kim, Park-Sa;So, Yoon-Hwan;Kang, Dong-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.667-676
    • /
    • 2012
  • This research investigated to reduce mass of heavy metals in AMD(acid mine drainage) by microbial mats formed on the channel bed. As, Cd, Cu, Fe, Mn and Zn components were monitored in water and microbial mats, at three points (AMD1, AMD2 and AMD3), in a total of six times. Average daily discharge mass of heavy metals was highest in July, Fe component contained more than 76% of total discharge mass. Discharge mass of heavy metals of AMD and heavy metal contents in microbial mats decreased with downstream at channel. Heavy metal components that average daily discharge mass is over 0.5 kg were Fe, Cu and Zn, and they were highest in July. Average removal efficiency of heavy metals in AMD was highest about 21% in Fe, this microbial mats were due to form from precipitation of Fe component in AMD by aerobic iron bacteria. Relative content for As component in microbial mats than AMD was over 16 times, this As components were due to absorb at iron oxide and iron hydroxide on the surface of microbial mats.

HYPERSPECTRAL IMAGERY AND SPECTROSCOPY FOR MAPPING DISTRIBUTION OF HEAVY METALS ALONG STREAMLINES

  • Choe, Eun-Young;Kim, Kyoung-Woong;Meer, Freek Van Der;Ruitenbeek, Frank Van;Werff, Harald Van Der;Smeth, Boudewijn De
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.397-400
    • /
    • 2007
  • For mapping the distribution of heavy metals in the mining area, field spectroscopy and hyperspectral remote sensing were used in this study. Although heavy metals are spectrally featureless from the visible to the short wave infrared range, possible variations in spectral signal due to heavy metals bound onto minerals can be explained with the metal binding reaction onto the mineral surface. Variations in the spectral absorption shapes of lattice OH and oxygen on the mineral surface due to the combination of heavy metals were surveyed over the range from 420 to 2400 nm. Spectral parameters such as peak ratio and peak area were derived and statistically linked to metal concentration levels in the streambed samples collected from the dry stream channels. The spatial relationships between spectral parameters and concentrations of heavy metals were yielded as well. Based on the observation at a ground level for the relationship between spectral signal and metal concentration levels, the spectral parameters were classified in a hyperspectral image and the spatial distribution patterns of classified pixels were compared with the product of analysis at the ground level. The degree of similarity between ground dataset and image dataset was statistically validated. These techniques are expected to support assessment of dispersion of heavy metal contamination and decision on optimal sampling point.

  • PDF

The Recognition Level of Food Contamination with Residual Pesticides and Hazardous Heavy Metals in Taejon Area (식품의 잔류농약 및 유해중금속의 오염인식도 -대전지역을 중심으로-)

  • 한장일;김성애
    • Korean Journal of Community Nutrition
    • /
    • v.3 no.3
    • /
    • pp.454-465
    • /
    • 1998
  • This study was to investigate the recognition level of food contamination with residual pesticides and hazardous heavy metals from 365 male and female adults in Taejon area using questionnaires. Among the recognizing level of residual pesticides in overall foods, 69.1% were 'serious', 25.6% were 'average' and 5.3% were 'not serious'. Over 94.7% of the subjects recognized residual pesticides pollution infoods. for hazardous heavy metals in food, 47.8% responsed as 'serious', 40.5% as 'average' and 11.8 as ' not serious' . Over 88.3% of the subjects recognized contaminated pesticides seriously in fruits, 72.1% in vegetables and 51.7% in cereals, whereas 55.7% of the subjects recognized hazardous heavy metal contamination seriously in fruits, 53.4% in vegetables, 40.8% in fishes and shellfishes and 35.0% in seaweeds. The subjects recognized residual pesticides contamination more seriously in overall foods, cereal, potatoes and starches, bean, vegetables and fruits, whereas hazardous heavy metal contamination was recognized more seriously in fishes and shellfishes, and seaweeds food groups. Comparisons were shown based on individuial's occupation. Farmer, forester, iner and fisher showed the lowest recognizing level of food contamination in most food groups. The mean score of the dietary effect by mass media's information on food contamination from residual pesticides and hazardous heavy metals were 3.51±0.96 out of 5 points. By Duncan's multiple range test, sex, age, marriage, food cost per month, concerns about health and nutrition knowledge showed significant differences in the mean effect score at p<0.05. According to a pesticides contamination in several food groups were affected by food cost per month, mass media's information on food contamination, health status, and concerns about health, But a recognition level of hazardous heavy metals in food were affected by income and, food cost per month mass media's information on food contamination, health status, concern about health and nutrition knowledge. People who need to take extreme precautions of food contamination were in order of producers, government officials, homemakers, the consumer's association and consumers.

  • PDF

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.

Biosorption of Heavy Metals by Biomass of Seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida (해조류(Laminaria species, Ecklonia stolonifera, Gelidium amansii, Undaria pinnatifida)에 의한 중금속 생물흡착 특성)

  • Choi, Ik-Won;Kim, Sung-Un;Seo, Dong-Cheol;Kang, Byung-Hwa;Sohn, Bo-Kyoon;Rim, Yo-Sup;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.370-378
    • /
    • 2005
  • The characteristics of heavy metal biosorption on the seaweeds were investigated to develop a biological treatment technology for wastewater polluted with heavy metals. The heavy metal biosorption on seaweeds ranked in the tallowing order: U. pinnatifida$\geq$E. stolonifera$\geq$Laminaria sp.>G. amansii. The Pb was biosorbed in the range of $93{\sim}99%$, and the Cu and Cd were biosorbed in the range of $70{\sim}80%$ at the concentration of the heavy metal of $100mg/{\ell}$ respectively. The seaweed which was pretreated with $CaCl_2$ solution improved the biosorption of the heavy metals. The temperature and pH didn't affect the biosorption of heavy metals. The Langmuir isotherm reasonably fit the data of heavy metal biosorption compared to the Freundlich isotherm. The affinity of metals on the biosorption ranked in the following order: Pb>Zn>Cu>Cd. The biosorption efficiency of the heavy metals on the U. pinnatifida decreased in the multi-component rather than the single component. The heavy metals adsorbed on the U. pinnatifida were recovered using 0.3%-NTA. U. pinnatifida among the seaweed used in this work showed the best performance for the biosorption of the heavy metals.