• Title/Summary/Keyword: Heavy-load

Search Result 1,040, Processing Time 0.023 seconds

Risk Based Accidental Limit State Evaluation on Explosion Accident at Shale Shaker Room of Semi-Submersible Drilling Rig (반잠수식 시추선의 Shale Shaker Room 폭발 사고에 대한 위험도 기반 사고한계상태 평가)

  • Yoo, Seung-Jae;Kim, Han-Byul;Park, Jin-Hoo;Won, Sun-Il;Choi, Byung-Ki
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.69-73
    • /
    • 2015
  • An evaluation of the accidental limit state (ALS) for design of a semi-submersible drilling rig is one of the essential design requirements as well as ultimate limit state (ULS) and fatigue limit state (FLS). This paper describes the ALS evaluation on the explosion accident at shale shaker room of semi-submersible drilling rig. There are three steps for the ALS evaluation such as structural analysis at concept design, risk based safety design and structural analysis at detailed design. For the ALS evaluation at concept design, conceptual explosion overpressure from the Rule guided by the classification society was used in the structural analysis that was carried out using LS-DYNA. To set up the design accidental load (DAL), explosion analysis was carried out using FLACS taking safety barriers into consideration. Then, the structural analysis was carried out applying DAL for the ALS evaluation at detailed design. Through the ALS evaluation on the explosion at shale shaker room, the importance of the risk based safety design was described.

  • PDF

Ice Load Generation in Time Domain Based on Ice Load Spectrum for Arctic Offshore Structures (극지해양구조물 성능평가를 위한 스펙트럼 기반 시간역 빙하중 생성에 관한 연구)

  • Kim, Young-Shik;Kim, Jin-Ha;Kang, Kuk-Jin;Han, Solyoung;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.411-418
    • /
    • 2018
  • This paper introduces a new method of ice load generation in the time domain for the station-keeping performance evaluation of Arctic offshore structures. This method is based on the ice load spectrum and mean ice load. Recently, there has been increasing interest in Arctic offshore technology for the exploration and exploitation of the Arctic region because of the better accessibility to the Arctic ocean provided by the global warming effect. It is essential to consider the ice load during the development of an Arctic offshore structure. In particular, when designing a station-keeping system for an Arctic offshore structure, a consideration of the ice load acting on the vessel in the time domain is essential to ensure its safety and security. Several methods have been developed to consider the ice load in the time domain. However, most of the developed methods are computationally heavy because they consider every ice floe in the sea ice field to calculate the ice load acting on the vessel. In this study, a new approach to generate the ice load in the time domain with computational efficiency was suggested, and its feasibility was examined. The ice load spectrum and mean ice load were acquired from a numerical analysis with GPU-event mechanics (GEM) software, and the ice load with the varying heading of a vessel was reconstructed to show the feasibility of the proposed method.

Advanced Load Follow Operation Mode for Korean Standardized Nuclear Power Plants (한국 표준 원전의 부하추종을 위한 운전 기법)

  • Park, Jung-In;Oh, Soo-Youl;Song, In-Ho;Hah, Yung-Joon;Kuh, Jung-Eui;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.183-192
    • /
    • 1992
  • An advanced load-follow operation mode, Mode K, is presented for the Korean Standardized Nuclear Power Plants. The Mode K utilizes a heavy worth bank dedicated to axial shape control independent of the existing regulating banks. In Mode K, the heavy bank provides a wide range of axial shape control and a monotonic relationship between its motion and the axial shape change, which makes it easy to automate axial shape control. The achievement of full automatic reactor power control both for the reactivity and power shape would reduce the burden due to load-follow operation on the operator. Also, it can accommodate the frequen-cy control, which requires the plant to respond to the unexpected demand. The Mode K design concepts were tested using simulation responses of Yonggwang Units 3&4, the reference plants for the Korean Standardized Nuclear Power Plants. The results illustrate that the Mode K is an adequate operation mode to provide practical load-follow capabilities for the Korean Standardized Nuclear Power Plants.

  • PDF

A Study on the Improvement of Greenhouse Frame to Bear the Heavy Snow (적설하중 증가에 대비한 비닐하우스 골조 성능의 개선 연구)

  • Jung, Hyunjin;Yang, Sanghyun;Lee, Taehee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2242-2248
    • /
    • 2015
  • The damages from greenhouses collapsing due to heavy snowfall in winter are increasing, and the current frames of greenhouse are required to be improved. This study was conducted to seek solutions to improve intensities of greenhouse frame to bear heavy snows. We investigated a structural safety of greenhouses by calculating axial force, bending moment and combined stress when snow load was increased up to 30% of the current standard ground snow load of the conventional greenhouse types (07-single type 3, 07-single type 18) in the three regions (Gyeongju, Sokcho, and Gangneung) where were most damaged by recent heavy snows. In addition, we determined what structural type was most efficiently bear snow loads by measuring the differences between the load bearing strength according to the changes of tube diameter and thickness or the rafter spacing of greenhouses circular pipe. MIDAS GEN program was used in the analysis. As a result, with the snow load increase of 30%, greenhouse in Gyongju was still safe, but in Sokcho was at a risk, and in Gangneung was possible to be collapsed even in the current snow load. Increased pipe diameter than increased pipe thickness was more efficient in terms of improved performance of greenhouse structure. Accordingly, it is suggested to revise standards of greenhouse to increase pipe diameter of rafter for minimizing damages by heavy snow.

Load Sharing in Hierarchical Cell Structure for High Speed Downlink Packet Transmission (하향링크 고속 패킷 전송을 위한 계층적 셀 구조에서의 기지국간 부하 분배)

  • Jeong, Dong-Geun;Jeon, Wha-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.5
    • /
    • pp.466-472
    • /
    • 2002
  • We investigate the load sharing problem between the umbrella cell and the overlaid tells in hierarchical cell structure. A load sharing strategy is proposed and its performance is evaluated by simulation when it is used for transmission of the mobile Internet traffic using the High Speed Downlink Packet Access scheme. The results show that, with the proposed strategy, the microcell backs well the overlaid picocells up, especially when a specific picocell cluster suffers unusual heavy load condition. By using the strategy, we can reduce the installation cost, otherwise needed for increasing the system capacity of every picocell cluster to cope with the unusual heavy load.

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.

Noise control of a slab using the laminated composite damping system (평판 부착형 제진시스템을 이용한 구조기인 소음 저감에 관한 연구)

  • Hwang, Jae-Seung;Kim, Gwang-Young;Hong, Geon-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.403-407
    • /
    • 2009
  • It is reported that the heavy weight floor impact noise of a slab system is very sensitive to the location of microphone and impact load. In addition, it is known that the aspect raio, thickness and boundary condition of a slab also have great effect on the noise induced by impact load. However, the effect has been mainly evaluated by experimental test and numerical analysis is nearly performed to verify the effect quantitatively. In this study, the effect of the aspect ratio, thickness and boundary condition on the heavy weight floor impact noise is examined through numerical analysis for simple rectangular slab system. The results show that the thickness and boundary condition have a strong correlation with the noise of the slab, on the contrary, the aspect ratio has little relation with the noise.

  • PDF

A Study on the EMF harmonics of Salient Synchronous Generator (돌극 동기발전기의 역기전력 고조파 연구)

  • Park, Jeong-Tae;Kim, Chang-Wook;Kim, Keun-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1050-1052
    • /
    • 2005
  • In this paper, air gap flux density is calculated by permeance model which can consider the effects of the stator slot and the salient pole shape of the salient synchronous generator. No load Electro-motive force(EMF) of the short-pitched and distributed stator winding is also calculated. Therefore, it's very convenient to calculate the THD of the no load EMF for the user's request, in the first design state.

  • PDF

Test Result Analysis of a 1MW HTS Motor for Industry Application

  • Baik, S.K.;Kwon, Y.K.;Kim, H.M.;Lee, E.Y.;Kim, Y.C.;Park, H.J.;Kwon, W.S.;Park, G.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.33-36
    • /
    • 2009
  • A 1 MW class HTS (High-Temperature Superconducting) synchronous motor has been developed. This motor is aimed to be utilized for industrial application such as large motors operating in large plants. The HTS field coil of the developed motor is cooled by way of neon thermo siphonmechanism and the stator (armature) coil is cooled by water through hollow copper conductor. This paper also describes evaluation of some electrical parameters from performance test results of our motor, which was conducted at steady state in generator mode and motor mode. Open and short circuit tests were conducted in generator mode while a 1.1 MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests. Load test was done upto rating torque during motor mode and efficiency was measured at each load torque.

Ergonomics Risk-Assessment Methods in Shipbuilding: Application of OWAS Considering Work load and Frequency for Risk Factor Analysis of WMSDs

  • Lee, Jun-Youb;Seo, Hyun-Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.185-189
    • /
    • 2012
  • Objective: The aim of this paper is to introduces Hyundai Heavy Industry's ergonomic risk assessment tool, H-OWAS, which is considering work load and frequency compared to the OWAS. Background: As prevalence of work-related musculoskeletal disorders(WMSDs) in ship building industries has been much higher than that in other industries, most of the large scaled corporations have implemented their own prevention program since legislation on the prevention of WMSDs had introduced in 2003. Method: This paper introduces WMSDs prevention program, HEMP(HHI Ergonomics Management Program) which consists of risk assessment, improvement efforts of working environments, medical treatment and training/evaluation and describes how to operate the program. We also describe application of OWAS method considering work load and frequency for risk factor analysis(H-OWAS) and shows methodology for assessing the ergonomic risk factor. And comparison of the assessment results between OWAS and H-OWAS is carried out by statistical analysis. Result: There was statistically significant difference in the assessment results between OWAS and H-OWAS, and regression shows H-OWAS explains the borg's scale of perceived exertion more clearly than OWAS. Conclusion: H-OWAS has been proved more effective tool than OWAS to evaluate ergonomic risk factor under real working condition. Application: H-OWAS can be widely applied to the many other companies when implementing the ergonomics risk assessment.