• Title/Summary/Keyword: Heavy spare parts

Search Result 3, Processing Time 0.017 seconds

A Vibration Isolation Design for Engine Room Opening Deck around Heavy Spare Parts of the Main Engine (Main Engine의 Heavy Spare Parts가 설치된 Engine Room Opening Deck의 방진 설계 사례)

  • Jeon, Yong-Hoon;Lim, Gu-Sub;Jeong, Tae-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.93-96
    • /
    • 2009
  • Foundation structure for the main engine heavy spare parts in the engine room is susceptible to resonance problem due to outfitting weight. In addition the deck floor has a large opening for the main engine installation and maintenance, which further weakens the foundation structure. To reinforce the weak structure, two types of approaches have been used; 1) insert an H-pillar below or above the floor and 2) increase the stiffener size. In this paper, the H-pillar approach is used to solve the vibration problem of the foundation structure in the engine room opening area. A commercial program is used to analyze the vibration problem ad to find the location and the size of the H-pillar. Modal test at the quay and on-board vibration measurement during the sea trial have confirmed the validity of inserting an H-pillar below the floor.

  • PDF

A Study on the Rolling Stock Assembly using Heavy Maintenance Factory (전동차 중정비 시설을 활용한 완성차 조립에 관한 연구)

  • Lee, Duk-Gyu;Park, Man-Su;Song, Moon-Shuk;Son, Young-Jin;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1418-1425
    • /
    • 2011
  • Subway operators in the country have their own heavy maintenance facilities for maintaining rolling stock(EMU). However, it is true that the heavy maintenance facilities are not utilized 100% with the recent trend of lengthening maintenance cycle(intervals). With the fact, this enabled the existing maintenance facilities to be utilized for other purposes. By taking advantage of spare facilities and the maintenance staff with rolling stock assembly abilities, subway operators can assemble rolling stock by procuring parts for the assembly instead of purchasing trains from other companies. It is estimated that this will enhance the operator's technology and have a great impact on the management skill as well. This study attempts to find out how the heavy maintenance factory can be utilized for rolling stock assembly.

  • PDF

A Study on the Successful Factors in the Application of RIMS Project for the Safe Operation of Rolling Stocks in the Public Transportation (공공교통 전동차 안전운행을 위한 RIMS 프로젝트 적용의 성공요인 연구)

  • Lee, Kang-Won;Bhang, Youn-Keun;Son, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.555-560
    • /
    • 2006
  • This study finds out and suggests success factors for the application of RIMS project through the case study of Seoul Metro and literature survey. The successful application of RIMS needs expert knowledge and concept of BOM, standardization of maintenance planning, check lists of heavy maintenance inspection, organization structure of rolling stock maintenance offices, material management system of warehousing and the process of parts repairing between offices, connection of material ordering system, problem solving of circular spare parts administration among inspection, maintenance, and material organizational units, systemic serial number management of parts with RFID, daily closing diary connected with work process chart, and sufficient period of RIMS's test run. RIMS contributes to real time management of rolling stock maintenance, transparency of management, reliability of train operation, customer satisfaction, and management innovation.