• 제목/요약/키워드: Heavy snowfall

검색결과 139건 처리시간 0.026초

우리나라 5대 대설지역의 적설량 변화 분석 (Spatio-temporal Analysis of Snowfall for 5 Heavy Snowfall Areas in South Korea)

  • 김샛별;신형진;하림;김성준
    • 대한토목학회논문집
    • /
    • 제32권2B호
    • /
    • pp.103-111
    • /
    • 2012
  • 본 연구는 5개의 대설지역을 울릉도(a), 영동북부(b), 서태백산맥(c), 소백산맥북서부(d), 남해안(e)으로 구분하여 30년(1980-2010)동안의 최심신적설자료를 이용하여 시공간적 경향성을 분석하였다. 30년 동안의 적설량과 빈도를 분석한 결과, c와 d의 일부지역에서 감소하는 경향을 나타내었다. 1980년부터 2000년까지의 기간(A)과 1990년부터 2010년까지의 기간(B)으로 구분하여 공간적 경향성을 비교한 결과, A에서 B기간까지 대설경보의 빈도수는 c와 d지역의 일부 지역에서 B기간 동안 감소한 경향을 명확하게 나타내었다. 연평균 적설량은 A기간부터 B기간까지 b지역이 증가하는 동안 d지역은 감소하여 지역간 큰 격차가 나타난 것으로 분석하였다.

태백산맥이 영동지역의 강설량 분포에 미치는 영향에 관한 수치 모의 사례 연구 (A Numerical Case Study Examining the Orographic Effect of the Taebaek Mountains on Snowfall Distribution over the Yeongdong Area)

  • 이재규;김유진
    • 대기
    • /
    • 제18권4호
    • /
    • pp.367-386
    • /
    • 2008
  • The Weather Research and Forecasting (WRF) model was designed to identify the role of the Taebaek Mountains in the occurrence of heavy snowfall in Yeongdong area with a strong northeast wind on January 20-21, 2008. To this end, in addition to the control simulation with the realistic distribution of the Taebaek Mountains, a sensitivity experiment that removed the orography over the Taebaek Mountains was performed. The control simulation results showed that the resulting wind field and precipitation distribution were similar to what were observed. Results from the sensitivity experiment clearly demonstrates the presence of orographic lifting on the windward slope of the mountains. It is concluded that the altitude of the Taebaek Mountains is the main controlling factor in determining the distribution and amount of precipitation in the Yeongdong area for the case of heavy snowfall in January 2008.

영동대설 예보지원시스템 개발 (Development of Yeongdong Heavy Snowfall Forecast Supporting System)

  • 권태영;함동주;이정순;김삼회;조구희;김지언;지준범;김덕래;최만규;김남원;남궁지연
    • 대기
    • /
    • 제16권3호
    • /
    • pp.247-257
    • /
    • 2006
  • The Yeong-dong heavy snowfall forecast supporting system has been developed during the last several years. In order to construct the conceptual model, we have examined the characteristics of heavy snowfalls in the Yeong-dong region classified into three precipitation patterns. This system is divided into two parts: forecast and observation. The main purpose of the forecast part is to produce value-added data and to display the geography based features reprocessing the numerical model results associated with a heavy snowfall. The forecast part consists of four submenus: synoptic fields, regional fields, precipitation and snowfall, and verification. Each offers guidance tips and data related with the prediction of heavy snowfalls, which helps weather forecasters understand better their meteorological conditions. The observation portion shows data of wind profiler and snow monitoring for application to nowcasting. The heavy snowfall forecast supporting system was applied and tested to the heavy snowfall event on 28 February 2006. In the beginning stage, this event showed the characteristics of warm precipitation pattern in the wind and surface pressure fields. However, we expected later on the weak warm precipitation pattern because the center of low pressure passing through the Straits of Korea was becoming weak. It was appeared that Gangwon Short Range Prediction System simulated a small amount of precipitation in the Yeong-dong region and this result generally agrees with the observations.

북동 기류와 관련된 영동해안 지역의 대설 사례에 대한 WRF수치모의 연구 (A Numerical Simulation Study Using WRF of a Heavy Snowfall Event in the Yeongdong Coastal Area in Relation to the Northeasterly)

  • 이재규;김유진
    • 대기
    • /
    • 제18권4호
    • /
    • pp.339-354
    • /
    • 2008
  • A numerical simulation of a heavy snowfall event that occurred 13 January 2008 along the Yeongdong coastal area, was performed using WRF (Weather Research and Forecasting) in order to reveal mesoscale structures and to construct a conceptual model showing the meteorological background that caused the large difference in snowfall amounts between the Yeongdong mountain area and the Yeongdong coastal area. The simulation results matched well with various observations such as corresponding 12h-accumulated observed precipitation, surface wind obscrvation, radar echoes, and satellite infrared images. The simulation and the observations showed that the scale of the event was of meso - $\beta$ and meso - $\gamma$ scale. The simulation represented well the mesoscale process causing the large difference in snowfall amounts in the two areas. First, wind flow was kept, to a certain extent, from crossing the mountains due to the blocking effect of the low Froude number (~1). The northeast flow over the adjaccnt sea tumcd northwest as it approachcd the mountains, where it was trapped, allowing so-called cold air damming. Second, a strong convergence area formed where the cold northwest flow along the Yeongdong coastal area and the relatively warm and moist northeast flow advecting toward the coast met, supporting the fonllation of a coastal front. Thus, the vertical motion was strongest over the front located near the coast, leading to the heavy snowfall there rather than in the remote mountain area.

2017년 1월 20일 발생한 강원 영동대설 사례에 대한 대기의 구조적 특성 연구 (A Study on the Synoptic Structural Characteristics of Heavy Snowfall Event in Yeongdong Area that Occurred on 20 January, 2017)

  • 안보영;이정선;김백조;김희원
    • 한국환경과학회지
    • /
    • 제28권9호
    • /
    • pp.765-784
    • /
    • 2019
  • The synoptic structural characteristics associated with heavy snowfall (Bukgangneung: 31.3 cm) that occurred in the Yeongdong area on 20 January 2017 was investigated using surface and upper-level weather charts, European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data, radiosonde data, and Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product. The cold dome and warm trough of approximately 500 hPa appeared with tropopause folding. As a result, cold and dry air penetrated into the middle and upper levels. At this time, the enhanced cyclonic potential vorticity caused strong baroclinicity, resulting in the sudden development of low pressure at the surface. Under the synoptic structure, localized heavy snowfall occurred in the Yeongdong area within a short time. These results can be confirmed from the vertical analysis of radiosonde data and the characteristics of the MODIS cloud product.

비닐하우스의 적설하중 구조안전성 검토에 관한 연구 (A Study on the Structural Safety Analysis for Vinyl House at Snow Load)

  • 백신원
    • 한국안전학회지
    • /
    • 제34권2호
    • /
    • pp.34-39
    • /
    • 2019
  • Vinyl house consists of main rafter, lateral member, clamps and polyethylene film. Many vinyl houses are used in the countryside to grow vegetables. These vinyl houses have occasionally been collapsed due to heavy snowfall in winter. Many farmers get a lot of economical damages, if vinyl houses are collapsed. So it is most important to built a safe vinyl house that can withstand heavy snowfall. In this study, a structural analysis was performed on three types of vinyl houses(07-single-01, 10-single-04, 12-single-01). In addition, the structural analysis of the three types of vinyl houses provided axial forces, flexural moment, and combined stress. For these three types of vinyl houses, structural safety was reviewed by obtaining the combined stress ratio by the strength design method. This structural review showed that the specifications for the vinyl house proposed in the design are not safe. Especially, the result of increasing the design snow load by 15 percent and 30 percent showed that the vinyl house structure constructed as a standard for vinyl house was a more dangerous structure. Therefore, it is necessary to revise regulations such as increasing the thickness of rafters or widening the gap in order to make vinyl houses structurally safe for heavy snowfall in the future, and to devise diverse methods to make vinyl houses that are structurally safe.

영동과 영남 지역에서 발생한 두 대설의 발달 메커니즘 비교 (Comparison of Development Mechanisms of Two Heavy Snowfall Events Occurred in Yeongnam and Yeongdong Regions of the Korean Peninsula)

  • 박지훈;김경익;허복행
    • 대기
    • /
    • 제19권1호
    • /
    • pp.9-36
    • /
    • 2009
  • Two heavy snowfall events occurred in Yeongnam and Yeongdong regions of the Korean Peninsula during the period from 4 to 6 March 2005 are analyzed. The events were developed by two different meso-scale snow clouds associated with an extratropical low passing over the Western Pacific. Based on synoptic data, GOES-9 satellite images, and precipitation amount data, the events were named as Sokcho and Busan cases, respectively. We analyzed the development mechanism of the events using meterological variables from the NCEP(National Centers for Environmental Prediction) /NCAR(National Centers for Atmospheric Research) reanalysis data such as potential vorticity(PV), divergence, tropopause undulation, static stability, and meridional wind circulation. The present analyses show that in the case of Sokcho, the cyclonic circulation in the lower atmosphere in the strong baroclinic region induced the cyclonic circulation in the upper atmosphere. The cyclonic circulation in the lower and upper atmosphere caused a heavy snowfall in the Sokcho region. In the case of Busan, the strong cyclonic circulation in the upper atmosphere was initiated by the stratospheric air intrusion with the high positive PV into the troposphere during the tropopause folding. The upper strong cyclonic circulation enhanced the cyclonic circulation in the lower disturbed atmosphere due to the extratropical low. This lower cyclonic circulation in turn, intensified the upper cyclonic circulation, that caused a heavy snowfall in the Busan region.

2011년 강원 폭설과 GPS 가강수량의 상관성 분석 (Correlation Analysis between GPS Precipitable Water Vapor and Heavy Snowfall on Gangwon Province in Early 2011)

  • 송동섭
    • 한국측량학회지
    • /
    • 제30권1호
    • /
    • pp.97-104
    • /
    • 2012
  • 본 연구에서는 2011년 강원도 영동 지방의 폭설 기간 동안 GPS 위성 신호의 대류권 지연량 추정으로부터 대기 가강수량을 복원하였다. 폭설이 발생하는 기간 동안에 GPS 가강수량과 신적설 발생량과의 상관관계에 대한 분석을 실시하였다. 분석 결과, GPS를 이용하여 복원한 대류권에서의 가강수량 증가가 발생된 이후에 강설량이 증가하는 추세를 나타냈다. 또한 웨이블릿을 이용한 주기 분석에서는 본 연구기간에 한해서 GPS 가강수량의 주기가 포화수증기압의 주기와 유사한 것으로 검출되었다. GPS 가강수량의 감소와 이에 대응하는 신적설량의 증감은 두 연구 지역인 강릉과 울진에서 모두 다르게 증감하는 경향을 나타냈다. 폭설 기간 동안 GPS 가강수량과 포화수증기압의 상관 계수는 강설이 발생하지 않는 기간 동안의 결과와는 달리 양의 상관성을 갖는 것으로 나타났다.

원격 탐사 기반 해양 표면 온도의 미세 분포 차이에 따른 강설량 예측성 연구 (A Study on Predictability of Snowfall Amount due to Fine Difference of Spatial Distribution of Remote Sensing based Sea Surface Temperature)

  • 이순환;유정우
    • 한국환경과학회지
    • /
    • 제23권8호
    • /
    • pp.1481-1493
    • /
    • 2014
  • In order to understand the relation between the distribution of sea surface temperature and heavy snowfall over western coast of the Korean peninsula, several numerical assessments were carried out. Numerical model used in this study is WRF, and sea surface temperature data were FNL(National Center for Environment Prediction-Final operational global analysis), RTG(Real Time Global analysis), and OSTIA(Operational Sea Surface Temperature and Sea Ice Analysis). There were produced on the basis of remote sensing data, such as a variety of satellite and in situ observation. The analysis focused on the heavy snowfall over Honam districts for 2 days from 29 December 2010. In comparison with RTG and OSTIA SST data, sensible and latent heat fluexes estimated by numerical simulation with FNL data were higher than those with RTG and OSTIA SST data, due to higher sea surface temperature of FNL. General distribution of RTG and OSTIA SST showed similar, however, fine spatial differences appear in near western coast of the peninsula. Estimated snow fall amount with OSTIA SST was occurred far from the western coast because of higher SST over sea far from coast than that near coast. On the other hand, snowfall amount near coast is larger than that over distance sea in simulation with RTG SST. The difference of snowfall amount between numerical assessment with RTG and OSTIA is induced from the fine difference of SST spatial distributions over the Yellow sea. So, the prediction accuracy of snowfall amount is strongly associated with the SST distribution not only over near coast but also over far from the western coast of the Korean peninsula.

강원도 산지지역의 자연재해 분포 특성 (The Distribution of Natural Disaster in Mountainous Region of Gangwon-do)

  • 이승호;이경미
    • 대한지리학회지
    • /
    • 제43권6호
    • /
    • pp.843-857
    • /
    • 2008
  • 본 연구에서는 강원도 산지지 역의 자연재해의 빈도 및 피해액의 분포 특성을 파악하고 이와 관련된 기후요소의 변화를 분석하였다. 최근 5년($2003{\sim}2007$년) 동안 강원도 산지지역에서는 총 27회의 자연재해가 발생하였으며 그 중 호우에 의한 재해가 16회로 가장 많다. 재해가 가장 빈번했던 지역은 평창군 진부면으로 총 9회 발생하였다. 강원도 산지지역에서 자연재해에 의한 피해는 그 주변지역보다 크며, 산지지역 내에서는 해발고도가 높은 지역에서 피해가 더 크다. 강원도 산지지역의 북서부 지역에는 주로 호우에 의한 피해만 있었으며, 태풍에 의한 피해는 산지의 남부 지역에 집중되었다. 강풍에 의한 피해는 대부분의 산지에서 나타나는 반면 대설에 의한 피해는 적다. 강원도 산지지역에서 강수량, 강수강도 및 호우일수는 증가하였고 2000년대에 들어서 강수강도의 증가 경향이 뚜렷하다. 반면 2000년대 이후 강설일수, 강설량 및 대설일수는 뚜렷하게 감소하고 있다. 강원도 산지지역에서는 최근 호우에 의한 재해가 가장 빈번하였고 강풍의 경우 감소하는 경향이나 호우와 함께 발생할 경우 그 피해가 크므로 호우 및 강풍에 의한 재해에 대한 대비가 중요하다.